Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Way to Protect Computer Networks from Internet Worms

06.06.2008
Scientists may have found a new way to combat the most dangerous form of computer virus.

The method automatically detects within minutes when an Internet worm has infected a computer network. Network administrators can then isolate infected machines and hold them in quarantine for repairs.

Ness Shroff, Ohio Eminent Scholar in Networking and Communications at Ohio State University, and his colleagues describe their strategy in the current issue of IEEE Transactions on Dependable and Secure Computing. They discovered how to contain the most virulent kind of worm: the kind that scans the Internet randomly, looking for vulnerable hosts to infect.

"These worms spread very quickly," Shroff said. "They flood the Net with junk traffic, and at their most benign, they overload computer networks and shut them down."

Code Red was a random scanning worm, and it caused $2.6 billion in lost productivity to businesses worldwide in 2001. Even worse, Shroff said, the worm blocked network traffic to important physical facilities such as subway stations and 911 call centers.

"Code Red infected more than 350,000 machines in less than 14 hours. We wanted to find a way to catch infections in their earliest stages, before they get that far," Shroff said.

The key, they found, is for software to monitor the number of scans that machines on a network send out. When a machine starts sending out too many scans -- a sign that it has been infected -- administrators should take it off line and check it for viruses.

The strategy sounds straightforward enough. A scan is just a search for Internet addresses -- what we do every time we use search engines such as Google. The difference is, a virus sends out many scans to many different destinations in a very short period of time, as it searches for machines to infect.

"The difficulty was figuring out how many scans were too many," Shroff said. "How many could you allow before an infection would spread wildly? You want to make sure the number is small to contain the infection. But if you make it too small, you'll interfere with normal network traffic."

"It turns out that you can allow quite a large number of scans, and you'll still catch the worm."

Shroff was working at Purdue University in 2006 when doctoral student Sarah Sellke suggested making a mathematical model of the early stages of worm growth. With Saurabh Bagchi, assistant professor of electrical and computer engineering at Purdue, they developed a model that calculated the probability that a virus would spread, depending on the maximum number of scans allowed before a machine was taken off line.

In simulations, they pitted their model against the Code Red worm, as well as the SQL Slammer worm of 2003. They simulated how far the virus would spread, depending on how many networks on the Internet were using the same containment strategy: quarantine any machine that sends out more than 10,000 scans.

They chose 10,000 because it is well above the number of scans that a typical computer network would send out in a month.

"An infected machine would reach this value very quickly, while a regular machine would not," Shroff explained. "A worm has to hit so many IP addresses so quickly in order to survive."

In the simulations pitted against the Code Red worm, they were able to prevent the spread of the infection to less than 150 hosts on the whole Internet, 95 percent of the time.

A variant of Code Red worm (Code Red II) scans the local network more efficiently, and finds vulnerable targets much faster. Their method was effective in containing such worms. In the simulations, they were able to trap the worm in its original network -- the one that would have started the outbreak -- 77 percent of the time.

Anywhere from 10 to 20 percent of the time, it spread to one other network, but no further. The remaining 3 to 13 percent of the time, it escaped to more networks, but the infection was slowed.

In all cases, there was a dramatic decrease in the spread of the worm within the first hour.

To use this strategy, network administrators would have to install software to monitor the number of scans on their networks, and would have to allow for some downtime among computers when they initiate a quarantine.

According to Shroff, that wouldn't be a problem for most organizations. Very small businesses -- ones with only a few servers -- may have more difficulty taking their machines off line.

"Unfortunately there is no complete foolproof solution," Shroff said. "You just keep trying to come up with techniques that limit a virus's ability to do harm."

He and his colleagues are working on adapting their strategy to stop targeted Internet worms -- ones that have been designed specifically to attack certain vulnerable IP addresses.

This work was supported by a grant from the National Science Foundation, and Sarah Sellke's NSF Graduate Fellowship.

Contact: Ness Shroff, (614) 247-6554; Shroff.11@osu.edu

Pam Frost Gorder | newswise
Further information:
http://www.osu.edu

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>