Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Holodeck 1.0? Star Trek-style 3-D displays make their debut

05.06.2008
Star Trek's holodeck is a famous science fiction concept. Crewmembers could walk through the garden of their childhood home, re-enact famous historical events or watch full, 3-D performances of famous plays. It was a rich source of story lines for the Star Trek writers because the holodeck offered so many opportunities to work, rest and play.

Crewmembers could also learn by using simulations to acquire new skills or execute training drills. They could simulate surgery, flight, and engine repairs in a truly realistic environment.

The holodeck is still science fiction, but last year researchers took the first, confident steps towards its realisation with the Coherent project. This EU-funded research project, developed a commercial, true 3-D display that could one day be called Holodeck version 1.0. It is called HoloVizio.

Innovation intensive
The HoloVizio is a 3-D screen that will allow designers to visualise true 3-D models of cars, engines or components. Better yet, gesture recognition means that observers can manipulate the models by waving their hands in front of the screen. The function offers enormous scope for collaboration across the globe.

"The aim of the COHERENT project was to create a new networked holographic audio-visual platform to support real-time collaborative 3-D interaction between geographically distributed teams," explains Akos Demeter, spokesperson for the project.

Two applications drove the design of the basic networked audiovisual components – a collaborative visualisation system for the medical sector and a collaborative design review system for the automotive industry.

The researchers based the display component on innovative holographic techniques that can present, at natural human interaction scale, realistic animated 3-D images simultaneously to an unlimited number of freely moving viewers.

No goggles required
The upshot is that users do not need goggles, and the 3-D image is maintained as they move about – both in contrast with early attempts at holographic displays. But the real star of the Coherent project is not simply the display. The researchers made exciting advances in enabling applications that show the system's real potential.

The COMEDIA application, for example, uses raw data from medical imaging devices to create 3-D models of anatomy. The development, led by Coherent partner CRS4 Visual Computing, demonstrated the system to 50 clinicians in Italy.

"The strength of the COMEDIA system is related to the collaboration, discussion and evaluation of clinical cases, since it provides users with an immediate 3-D understanding of the anatomy shown," explains Demeter.

COMEDIA led to the 'Holo-Heart' series of seminars last year.

Art's hidden secrets
CRS4 also developed rendering and visualisation software that may reveal the artistic secrets of the great masters, like Michelangelo. A scan of his famous David revealed that the eyes diverge.

It is impossible to see this by standing in front of the statue, because of its height and the position of the left forearm. But it becomes clear when viewed through the COHERENT system, and theorists posit that Michelangelo wanted to present two different faces of the same character.

Coherent also led to the development of the COLLAUDA application for collaborative automotive design. The application, developed with CS Systemes d’Information and Peugeot in France, led to a series of demonstrations to potential end users.

The demonstration led to a new project collaboration, named ARIVA, which starts in June 2008.

Oil exploration
Finally, COHERENT's researchers explored the potential for applying holographic systems for oil exploration, using Shell's data. The system displayed real examples of subsurface data. Holografika, the Hungarian research company behind the Holovizio system, developed a lot of the core technology used by the project.

In all, the team developed useful applications for a leading edge, emergent technology, explored excellent commercial opportunities and perfected holographic and allied systems for real-world use. The research also stimulated enormous interest in the area and prompted a wave of activity in the sector. But history, perhaps, will remember the Coherent project as the precursor to a real world holodeck.

The project received funding from the EU's Sixth Framework Programme for research.

Ahmed ElAmin | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89757

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>