Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Belgian researchers develop desktop supercomputer

30.05.2008
How much computing power can you cram into a single desktop PC? Researchers from the University of Antwerp in Belgium have developed a special PC that can perform their computations just as fast as hundreds of normal PCs.

Using this super PC, which mainly consists of gaming hardware and costs less than 4000 euro, they can carry out their computations on three-dimensional images within a few hours, compared to weeks on a regular PC.

The research group Vision Lab at the University of Antwerp focuses on the development of new computational methods for tomography. Tomography is a technique used in medical scanners to create three-dimensional images of the internal organs of patients, based on a large number of X-ray photos that are acquired over a range of angles. As these 3D images can be quite large, advanced reconstruction techniques can sometimes require weeks of computation time on a regular PC.

Fortunately, these computations can be carried out in parallel, for example using a cluster consisting of hundreds of PC's. Employing a large cluster has some drawbacks as well: it is quite expensive, is not always available, takes a lot of space and requires considerable maintenance.

The scientists now develop software for reconstructing 3D images with the aid of 3D graphics cards that are supposed to be used for playing 3D games. In fact, graphics cards are highly suitable for tomography computations. By appropriate programming of the graphics processors (GPUs) on these cards, many calculations can be performed simultaneously.

For their most demanding computations tasks, the researchers developed the FASTRA: a desktop superPC, which contains four dual-GPU graphics cards. Having eight graphics processors work in parallel allows this system to perform as fast as 350 modern processor cores for tomography computations, reducing the reconstruction times from several weeks (on a normal PC) to hours. The Vision Lab is now planning to build a cluster of such systems, which will allow for real-time reconstruction of large 3D volumes.

Els Grieten | alfa
Further information:
http://www.ua.ac.be
http://fastra.ua.ac.be

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections

25.09.2017 | Life Sciences

NASA'S OSIRIS-REx spacecraft slingshots past Earth

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>