Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough made in electronics technology

05.07.2002


Researchers at Oregon State University have made a significant breakthrough in the technology to produce crystalline oxide films, which play roles in semiconductor chips, flat panel displays and many other electronic products.



In a report to be published Friday in the journal Science, the OSU scientists explain a way to create these crystalline thin films at temperatures far lower than those used currently, and with no need to be produced in a vacuum as the current technology usually requires.

This fundamental advance may eventually open up important new applications in the electronics, computer and high technology industries, making new products possible or lowering the cost of those already being created.


The study was a joint effort of scientists in the Department of Chemistry and Department of Electrical and Computer Engineering at OSU, in collaboration with two private technology companies, Hewlett Packard and ReyTech Corp. of Bend, Ore. The research was supported by Hewlett Packard and $1.25 million in grants from the National Science Foundation. OSU has applied for a patent on the new advance.

"This is a general method of producing oxide films that could bring down manufacturing costs tremendously and change the way many electronic or photonic products are created," said Douglas Keszler, an OSU professor of chemistry. "It’s a real breakthrough that could shake up a few people in the high tech and thin film industries. There should be quite a bit of interest."

According to Keszler, many electronic or photonic devices contain crystalline oxide films that can conduct electricity, serve as insulators or have desirable optical properties. To achieve crystallinity, it’s usually necessary to manufacture the films in high vacuum conditions and at extraordinarily high temperatures of more than 1,800 degrees. Sophisticated equipment is needed to achieve both the vacuum condition and high temperature, and the process is expensive.

By contrast, the new approach discovered by OSU scientists and engineers uses a simple, water-based chemistry to deposit and crystallize these films at dramatically lower temperatures, about 250 degrees, or just slightly hotter than boiling water. No vacuum is necessary.

"We found that you can take certain materials that contain water and let them dehydrate slowly and at low temperatures, and still observe crystallinity," Keszler said. "Processing is done in a bath, rather than requiring expensive technology, vacuums and very high temperatures. There has never been a way before to both deposit and crystallize electronic or photonic films at such low temperatures."

The very need for such high manufacturing temperatures, the OSU researchers said, has in fact precluded the use of these electronic thin films on some applications, such as plastics, that would melt and be destroyed by temperatures of 1,800 degrees. And the new approach could also facilitate cheaper mass production of some products, whereas in the past the need for sophisticated technology and space constraints might have limited manufacturers to making one product or a few at a time.

According to John Wager, a co-author on the study and professor of electrical and computer engineering at OSU, it may take further research and increased collaboration with private industry to implement the new approach in large-scale commercial manufacturing processes. But the possibilities seem promising, he said.

"It’s always difficult to predict exactly how a new technology will be received and used in manufacturing products," Wager said. "But clearly this offers some ways to reduce costs or create new products that never were possible before."

The OSU researchers said it may now be more practical to place electronic devices on a plastic substrate, such as a credit card or for other uses. There may be applications with flat panel displays, insulating glass, storage batteries, use of these films as a corrosion barrier, in liquid crystal displays, or in some of the exciting new products made possible by transparent electronics.

And the new technology could be developed to play a key role in the semiconductor industry, Wager said.

"Everything in semiconductor manufacturing is moving to lower temperature processing in order to create smaller devices," Wager said. "Atoms move around too much at high temperatures. This new approach to creating crystalline thin films could find practical, mass production applications in semiconductor chips once the technology is fully developed to its potential."

"We expect a fair amount of interest," Wager said.


###
By David Stauth, 541-737-0787

SOURCE: John Wager, 541-737-2994


Douglas Keszler | EurekAlert!

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>