Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High performance videos surveillance system dedicated to videogames

28.05.2008
Researchers from the Rey Juan Carlos University work to prove that the performance of Graphics Processing Units and videogame systems in many cases surpass that of common personal computers.

Tasks with high computational requirements, such as tomographic or satellite image reconstruction, combinational problems or computer image recognition would benefit from the high computational capabilities at low price of the hardware devices used in videogame stations or the graphics processing units of personal computers.

This idea culminated in 2003, when Mark Harris, a PhD student at North Carolina University at Chapel Hill (www.unc.edu), now working for the multinational company NVidia, used the computational power offered by a graphics processing unit (GPU) of a personal computer to simulate and render real time images of the physical processes involved in the formation of clouds. Since then, the term GPGPU (General Purpose computing on Graphics Processing Units www.gpgpu.org ) was acquired for the use of graphic processing hardware in more general applications. Currently, this alternative use of the videogame stations and GPUs is being applied in collaborative projects such as Folding@Home (http://folding.stanford.edu).

The present focus of the researchers of the High Performance Computation and Optimization Team (www.gavab.es/capo) part of the GAVAB group (www.gavab.es) at the Rey Juan Carlos University (www.urjc.es) the is project V-ATRAP. The objective of this project is to prove the benefits that this type of technology has to offer as a computing unit for new tasks such as visual recognition and tracing, both very useful applied to real-time video surveillance and offering of up to 14 times faster performances than the existing solution based on the traditional computers.

At present, the technology used in the construction of graphical chipsets for videogame stations is comparable to the most up-to-date technology used by computer manufacturers. In fact, a processing unit of a PC can hold 400 million transistors per core, while an average graphics processing unit can hold as much as double that number. This offers a higher computational power at a lower cost for a wide range of applications, such as high definition video processing, medical image processing or assisted multiple camera video surveillance.

Author Antonio Sanz Montemayor

Oficina Información Científica | alfa
Further information:
http://www.gavab.es/capo
http://www.gavab.es
http://www.gavab.es/capo/vatrap

More articles from Information Technology:

nachricht Snake-inspired robot uses kirigami to move
22.02.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Camera technology in vehicles: Low-latency image data compression
22.02.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>