Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


High performance videos surveillance system dedicated to videogames

Researchers from the Rey Juan Carlos University work to prove that the performance of Graphics Processing Units and videogame systems in many cases surpass that of common personal computers.

Tasks with high computational requirements, such as tomographic or satellite image reconstruction, combinational problems or computer image recognition would benefit from the high computational capabilities at low price of the hardware devices used in videogame stations or the graphics processing units of personal computers.

This idea culminated in 2003, when Mark Harris, a PhD student at North Carolina University at Chapel Hill (, now working for the multinational company NVidia, used the computational power offered by a graphics processing unit (GPU) of a personal computer to simulate and render real time images of the physical processes involved in the formation of clouds. Since then, the term GPGPU (General Purpose computing on Graphics Processing Units ) was acquired for the use of graphic processing hardware in more general applications. Currently, this alternative use of the videogame stations and GPUs is being applied in collaborative projects such as Folding@Home (

The present focus of the researchers of the High Performance Computation and Optimization Team ( part of the GAVAB group ( at the Rey Juan Carlos University ( the is project V-ATRAP. The objective of this project is to prove the benefits that this type of technology has to offer as a computing unit for new tasks such as visual recognition and tracing, both very useful applied to real-time video surveillance and offering of up to 14 times faster performances than the existing solution based on the traditional computers.

At present, the technology used in the construction of graphical chipsets for videogame stations is comparable to the most up-to-date technology used by computer manufacturers. In fact, a processing unit of a PC can hold 400 million transistors per core, while an average graphics processing unit can hold as much as double that number. This offers a higher computational power at a lower cost for a wide range of applications, such as high definition video processing, medical image processing or assisted multiple camera video surveillance.

Author Antonio Sanz Montemayor

Oficina Información Científica | alfa
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>