Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Andalusian Researchers Work In A Software To Study Heart Activity During Sleep

23.05.2008
Human beings are determined to control, change and understand many issues related to health, like the breathing rhythm and cardiac frequency. In order to study it in depth, experts need to have the tools that automatically analyse the data obtained. That’s why diagnosis and therapies can show some light into this.

A group of researchers of the University of Málaga (UMA) have decided to improve one of such tools to apply it, for example, to the influence of the different sleep stages in the cardiac activity.

These researchers of the Applied Physics department of the Telecommunication Engineering Faculty (UMA) collaborated a few years ago in a project of the Institutos Nacionales de la Salud (NIH) of the USA in which they tried to apply a segmentation algorithm of temporary, previously developed by the UMA, to identify the different cardiac activity schemes that follow one another while we sep and try to relate them to the different sleep stages.

The idea behind these experiments was to represent the changes that take place, for example, in the cardiac frequency of healthy and ill people, as well as astronauts, while they were sleeping. The project did not reveal the expected results, probably because the designed computing algorithms were not the most appropriate ones to measure such a complex activity. This research group will now have three years to start to develop a method to face this challenge. The project has been funded with 67,800 euros as part of the order passed by the Andalusian Ministry of Innovation, Science and Enterprise within the project of excellence ramework.

Fractal nature

According to the leading researcher, Dr. Bernaola Galván, the difficulty in finding out the patterns of cardiac activity is the enormous complexity of these data. Contrary to what has been usually thought, in the normal activity estates cardiac rhythm is very variable and this results in series of heterogeneous data at all levels. ‘These patterns have a fractal nature. However, if we isolated just a small part of them, we would observe that it is an identical copy of the same whole’, he explained. For example, we can imagine a tree branch whose sprouts are new branches which, in turn, will come into bud of identical structure ad infinitum.

The value of these algorithms as a diagnosis tool in patients with sleep apnoea, for example, could be very interesting. However, in order to reach that point, scientists would have to solve this complex Rubick’s cube before. ‘The first step will consist of making many numeric simulations, which will result in a large number of artificial fractal sequences with which a computing ‘training’ program will be implemented, Bernaola explained. Researchers hope that, with this ‘training’ the software can automatically find the points where relevant changes in the analysed data series take place.

Previous applications and studies

The research group does not rule out the possibility of studying new scenarios. ‘We would like to apply our techniques to encephalogram series while doing physical activities’, Dr. Bernaola explained. These scientists have not stopped widening their field of study ever since they started their research line in the 1990’s. The segmentation algorithms initially developed by this group were applied to the search for areas of different proportions between nucleotides in DNA sequences; this led them to collaborate with Dr Bernardi, author of the isochors theory, the first attempt to describe the structure of the human genome at a large scale.

Another relevant work carried out by this team consisted of measuring the heart rhythm in patients with cardiac congestive failure, in collaboration with Harvard University hospital. The research revealed that the cardiac activity of healthy people and ill people showed areas with the same variations, provided that they were subjected to the same stimulus. This indicated that both types of people react, or try to react, to stimulus in a similar way. However, the determining factor for this to happen was the extent of such changes, which was much smaller in the case of ill people.

Yet more of their project experience includes the application of their algorithms to study sun radiation in collaboration with the University of Malaga group, led by Dr. Sidrach de Cardona. Among other things, these studies aim to determine whether or not solar energy facilities are profitable, the frequency of sunny days, and how the atmosphere evolves in a particular place, to name but a few.

The research group of the Applied Physics department of the Telecommunication Engineering Faculty (UMA) that will be working in the current project of excellence is made up by five members. However, there will also be a researcher from the University of Boston involved as a result of the many international collaborations of the group.

The beginning of this sort of temporary series analysis dates back to the 1970’s, and although it is still applied to several fields today, it actually developed as a result of the need to control and forecast changes in the coal production in mines, due to the possibility of running out of it.

Ismael Gaona | alfa
Further information:
http://www.uma.es

More articles from Information Technology:

nachricht Smart Computers
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>