Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Andalusian Researchers Work In A Software To Study Heart Activity During Sleep

23.05.2008
Human beings are determined to control, change and understand many issues related to health, like the breathing rhythm and cardiac frequency. In order to study it in depth, experts need to have the tools that automatically analyse the data obtained. That’s why diagnosis and therapies can show some light into this.

A group of researchers of the University of Málaga (UMA) have decided to improve one of such tools to apply it, for example, to the influence of the different sleep stages in the cardiac activity.

These researchers of the Applied Physics department of the Telecommunication Engineering Faculty (UMA) collaborated a few years ago in a project of the Institutos Nacionales de la Salud (NIH) of the USA in which they tried to apply a segmentation algorithm of temporary, previously developed by the UMA, to identify the different cardiac activity schemes that follow one another while we sep and try to relate them to the different sleep stages.

The idea behind these experiments was to represent the changes that take place, for example, in the cardiac frequency of healthy and ill people, as well as astronauts, while they were sleeping. The project did not reveal the expected results, probably because the designed computing algorithms were not the most appropriate ones to measure such a complex activity. This research group will now have three years to start to develop a method to face this challenge. The project has been funded with 67,800 euros as part of the order passed by the Andalusian Ministry of Innovation, Science and Enterprise within the project of excellence ramework.

Fractal nature

According to the leading researcher, Dr. Bernaola Galván, the difficulty in finding out the patterns of cardiac activity is the enormous complexity of these data. Contrary to what has been usually thought, in the normal activity estates cardiac rhythm is very variable and this results in series of heterogeneous data at all levels. ‘These patterns have a fractal nature. However, if we isolated just a small part of them, we would observe that it is an identical copy of the same whole’, he explained. For example, we can imagine a tree branch whose sprouts are new branches which, in turn, will come into bud of identical structure ad infinitum.

The value of these algorithms as a diagnosis tool in patients with sleep apnoea, for example, could be very interesting. However, in order to reach that point, scientists would have to solve this complex Rubick’s cube before. ‘The first step will consist of making many numeric simulations, which will result in a large number of artificial fractal sequences with which a computing ‘training’ program will be implemented, Bernaola explained. Researchers hope that, with this ‘training’ the software can automatically find the points where relevant changes in the analysed data series take place.

Previous applications and studies

The research group does not rule out the possibility of studying new scenarios. ‘We would like to apply our techniques to encephalogram series while doing physical activities’, Dr. Bernaola explained. These scientists have not stopped widening their field of study ever since they started their research line in the 1990’s. The segmentation algorithms initially developed by this group were applied to the search for areas of different proportions between nucleotides in DNA sequences; this led them to collaborate with Dr Bernardi, author of the isochors theory, the first attempt to describe the structure of the human genome at a large scale.

Another relevant work carried out by this team consisted of measuring the heart rhythm in patients with cardiac congestive failure, in collaboration with Harvard University hospital. The research revealed that the cardiac activity of healthy people and ill people showed areas with the same variations, provided that they were subjected to the same stimulus. This indicated that both types of people react, or try to react, to stimulus in a similar way. However, the determining factor for this to happen was the extent of such changes, which was much smaller in the case of ill people.

Yet more of their project experience includes the application of their algorithms to study sun radiation in collaboration with the University of Malaga group, led by Dr. Sidrach de Cardona. Among other things, these studies aim to determine whether or not solar energy facilities are profitable, the frequency of sunny days, and how the atmosphere evolves in a particular place, to name but a few.

The research group of the Applied Physics department of the Telecommunication Engineering Faculty (UMA) that will be working in the current project of excellence is made up by five members. However, there will also be a researcher from the University of Boston involved as a result of the many international collaborations of the group.

The beginning of this sort of temporary series analysis dates back to the 1970’s, and although it is still applied to several fields today, it actually developed as a result of the need to control and forecast changes in the coal production in mines, due to the possibility of running out of it.

Ismael Gaona | alfa
Further information:
http://www.uma.es

More articles from Information Technology:

nachricht Seeing the forest through the trees with a new LiDAR system
28.06.2017 | The Optical Society

nachricht Drones that drive
27.06.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>