Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists have designed a system to monitor forest fires using video images

23.05.2008
Scientists from the Universidad de Sevilla (US) [University of Seville] and the Universidad Pablo de Olavide (UPO) [University of Pablo de Olavide] have designed a “Vision Computing System” to monitor forest fires.

This would enable the position of flame front and their maximum height to be estimated, in real time, using video images. This system could be very helpful in studying the development of fires and introducing improvements in fire-extinguishing techniques, according to its inventors.

Luis Merino who is one of the authors of the study, and a Professor at the Escuela Politécnica Superior de la UPO de Sevilla [Polytechnic School of Pabloc Olavide, Seville] explains to SINC that two types of images are used in this technique. Visual images that are recorded using a conventional video camera and infrared images that are recorded with special cameras for this type of spectrum, “furthermore they are taken from different viewpoints in order to increase error robustness”. The visual information collected is digitised and processed on a computer.

This IT tool enables data obtained with the cameras to be compared with data contained in the system in a way that enables the software to take measurements of the size of the flame front, its height, angle of incline and to generate a 3D model of the fire.

Merino does point out that although various research groups analysing flame propagation models in the field are using this system already, “the fire-fighters can also use it to obtain precise, real time information about fire patterns, a very important matter in relation to the safety of the reserve fire-fighting teams”. In recent years several of these professional fire-fighters lost their lives while extinguishing the fires; there were eleven people who perished in the fire of Guadalajara in 2005.

The technique developed by the engineers requires moving the cameras and the portable computers to the site of the fire, and this is not always easy. For this reason the researchers are working currently to be able to apply this system in air vehicles, both in crewed helicopters and autonomous air robots. In fact, this methodology has been tested on-line and in real time in controlled forest fire experiments performed in Portugal, in collaboration with the Asociación para el Desarrollo de la Aerodinámica Industrial (ADAI) [Association for the Development of Industrial Aerodynamics from the Universidad de Coimbra (University of Coimbra].

At the present time Andalucian researchers are trying to incorporate the system into robotised helicopters and other uncrewed aerial vehicles, within the framework of the AWARE project (http://www.aware-project.net/), in which various European research groups are participating.

The Grupo de Robótica, Visión y Control [Robotics, Vision and Control Group] from the Universidad de Sevilla (University of Seville] is co-ordinating these studies, headed by the Professor of Automatic Control and Systems Engineering, Aníbal Ollero. At a national level these scientists have become involved in the AEROSENS project as well, which is financed by the Ministry of Education and Science, and committed to the fight against natural disasters using sensor networks and aerial robots.

SINC Team | alfa
Further information:
http://www.plataformasinc.es

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>