Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists have designed a system to monitor forest fires using video images

23.05.2008
Scientists from the Universidad de Sevilla (US) [University of Seville] and the Universidad Pablo de Olavide (UPO) [University of Pablo de Olavide] have designed a “Vision Computing System” to monitor forest fires.

This would enable the position of flame front and their maximum height to be estimated, in real time, using video images. This system could be very helpful in studying the development of fires and introducing improvements in fire-extinguishing techniques, according to its inventors.

Luis Merino who is one of the authors of the study, and a Professor at the Escuela Politécnica Superior de la UPO de Sevilla [Polytechnic School of Pabloc Olavide, Seville] explains to SINC that two types of images are used in this technique. Visual images that are recorded using a conventional video camera and infrared images that are recorded with special cameras for this type of spectrum, “furthermore they are taken from different viewpoints in order to increase error robustness”. The visual information collected is digitised and processed on a computer.

This IT tool enables data obtained with the cameras to be compared with data contained in the system in a way that enables the software to take measurements of the size of the flame front, its height, angle of incline and to generate a 3D model of the fire.

Merino does point out that although various research groups analysing flame propagation models in the field are using this system already, “the fire-fighters can also use it to obtain precise, real time information about fire patterns, a very important matter in relation to the safety of the reserve fire-fighting teams”. In recent years several of these professional fire-fighters lost their lives while extinguishing the fires; there were eleven people who perished in the fire of Guadalajara in 2005.

The technique developed by the engineers requires moving the cameras and the portable computers to the site of the fire, and this is not always easy. For this reason the researchers are working currently to be able to apply this system in air vehicles, both in crewed helicopters and autonomous air robots. In fact, this methodology has been tested on-line and in real time in controlled forest fire experiments performed in Portugal, in collaboration with the Asociación para el Desarrollo de la Aerodinámica Industrial (ADAI) [Association for the Development of Industrial Aerodynamics from the Universidad de Coimbra (University of Coimbra].

At the present time Andalucian researchers are trying to incorporate the system into robotised helicopters and other uncrewed aerial vehicles, within the framework of the AWARE project (http://www.aware-project.net/), in which various European research groups are participating.

The Grupo de Robótica, Visión y Control [Robotics, Vision and Control Group] from the Universidad de Sevilla (University of Seville] is co-ordinating these studies, headed by the Professor of Automatic Control and Systems Engineering, Aníbal Ollero. At a national level these scientists have become involved in the AEROSENS project as well, which is financed by the Ministry of Education and Science, and committed to the fight against natural disasters using sensor networks and aerial robots.

SINC Team | alfa
Further information:
http://www.plataformasinc.es

More articles from Information Technology:

nachricht Snake-inspired robot uses kirigami to move
22.02.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Camera technology in vehicles: Low-latency image data compression
22.02.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

A Keen Sense for Molecules

23.02.2018 | Physics and Astronomy

“Laser Technology Live” at the AKL’18 International Laser Technology Congress in Aachen

23.02.2018 | Trade Fair News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>