Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists have designed a system to monitor forest fires using video images

23.05.2008
Scientists from the Universidad de Sevilla (US) [University of Seville] and the Universidad Pablo de Olavide (UPO) [University of Pablo de Olavide] have designed a “Vision Computing System” to monitor forest fires.

This would enable the position of flame front and their maximum height to be estimated, in real time, using video images. This system could be very helpful in studying the development of fires and introducing improvements in fire-extinguishing techniques, according to its inventors.

Luis Merino who is one of the authors of the study, and a Professor at the Escuela Politécnica Superior de la UPO de Sevilla [Polytechnic School of Pabloc Olavide, Seville] explains to SINC that two types of images are used in this technique. Visual images that are recorded using a conventional video camera and infrared images that are recorded with special cameras for this type of spectrum, “furthermore they are taken from different viewpoints in order to increase error robustness”. The visual information collected is digitised and processed on a computer.

This IT tool enables data obtained with the cameras to be compared with data contained in the system in a way that enables the software to take measurements of the size of the flame front, its height, angle of incline and to generate a 3D model of the fire.

Merino does point out that although various research groups analysing flame propagation models in the field are using this system already, “the fire-fighters can also use it to obtain precise, real time information about fire patterns, a very important matter in relation to the safety of the reserve fire-fighting teams”. In recent years several of these professional fire-fighters lost their lives while extinguishing the fires; there were eleven people who perished in the fire of Guadalajara in 2005.

The technique developed by the engineers requires moving the cameras and the portable computers to the site of the fire, and this is not always easy. For this reason the researchers are working currently to be able to apply this system in air vehicles, both in crewed helicopters and autonomous air robots. In fact, this methodology has been tested on-line and in real time in controlled forest fire experiments performed in Portugal, in collaboration with the Asociación para el Desarrollo de la Aerodinámica Industrial (ADAI) [Association for the Development of Industrial Aerodynamics from the Universidad de Coimbra (University of Coimbra].

At the present time Andalucian researchers are trying to incorporate the system into robotised helicopters and other uncrewed aerial vehicles, within the framework of the AWARE project (http://www.aware-project.net/), in which various European research groups are participating.

The Grupo de Robótica, Visión y Control [Robotics, Vision and Control Group] from the Universidad de Sevilla (University of Seville] is co-ordinating these studies, headed by the Professor of Automatic Control and Systems Engineering, Aníbal Ollero. At a national level these scientists have become involved in the AEROSENS project as well, which is financed by the Ministry of Education and Science, and committed to the fight against natural disasters using sensor networks and aerial robots.

SINC Team | alfa
Further information:
http://www.plataformasinc.es

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>