Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mars Express mission controllers ready for NASA Phoenix landing

21.05.2008
ESA's Mars Express mission control team are ready to monitor Phoenix's critical entry, descent and landing onto the Martian surface on 26 May 2008.

The Mars Express mission control team have completed major preparations for supporting the entry, descent and landing (EDL) phase of NASA's Phoenix mission to the Red Planet. On 25 May, Mars Express will point towards Phoenix's planned entry trajectory and record signals broadcast from the lander as it plunges through the Martian atmosphere.

The recorded data will serve as a useful and potentially crucial back-up to compare Phoenix's planned and actual descent profiles. Landing is planned for 23:38 UTC, 25 May, which is 01:38 CEST, 26 May.

"We have tested a specially designed slew for our spacecraft, and scheduled a series of data downloads immediately after Phoenix's landing; NASA will receive our recorded data about one hour later," says Michel Denis, Spacecraft Operations Manager at ESOC, ESA's Space Operations Centre, Darmstadt, Germany.

The Mars Express team will monitor the event from the Dedicated Control Room at ESOC.

Effective reuse of on-board lander communications system

Mission controllers will use the MELACOM (Mars Express Lander Communications) system to point towards Phoenix during EDL; the radio instrument was originally intended for communications with the Beagle 2 lander.

Mars Express will perform a high-speed slew as MELACOM tracks Phoenix, rotating about one axis at a speed some two to three times faster than normal; this action has already been tested and confirmed. The orbit phasing of Mars Express was already adjusted at the end of 2007 to provide visibility to Phoenix.

Data recording is scheduled to begin at 23:21 UTC, and run for 26 minutes, until 23:47 UTC.

"Our MELACOM data will enable NASA to confirm the Phoenix lander's descent characteristics, including speed and acceleration through the Mars atmosphere," says Peter Schmitz, Deputy Spacecraft Operations Manager and project lead for Mars Express Phoenix support activities.

MELACOM data will be downloaded to Earth via NASA's Deep Space terminals DSS-15 and DSS-25. After a 15-minute, 20-second light-speed travel time, ESOC will receive the data transmitted from Mars Express, i.e. at 00:40 UTC ( 02:40 CEST). Recorded data will subsequently be downloaded two more times to ensure no loss of packets.

The ESA spacecraft will also fly over Phoenix's intended landing zone, beginning at 06:12 UTC (08:12 CEST) on 26 May and will again monitor signals transmitted up from the surface.

In the following week, Mars Express will monitor Phoenix using MELACOM 14 more times; at least one of these will be used to demonstrate and confirm that the ESA spacecraft can be used as a data relay station for NASA, receiving data from the surface and transmitting test commands to the lander.

This capability has already been trialed between Mars Express and NASA's Mars Exploration Rovers (MER), now operating on the surface.

In the days leading up to the Phoenix landing, NASA and ESA ground stations also cooperated to perform highly sophisticated 'delta-DOR' (delta - Differential One-way Range) interferometry measurements. This enabled a precise determination of whether Phoenix was on track to meet the planned entry point.

This is the first time that ESA has been requested to operationally support NASA with the delta-DOR equipment installed at the Agency's two deep-space tracking stations, in Cebreros, Spain, and New Norcia, Australia.

| alfa
Further information:
http://www.esa.int/SPECIALS/Operations/SEM8KD0YUFF_0.html

More articles from Information Technology:

nachricht New epidemic management system combats monkeypox outbreak in Nigeria
15.12.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Diamond Lenses and Space Lasers at Photonics West

15.12.2017 | Trade Fair News

A better way to weigh millions of solitary stars

15.12.2017 | Physics and Astronomy

New epidemic management system combats monkeypox outbreak in Nigeria

15.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>