Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mars Express mission controllers ready for NASA Phoenix landing

21.05.2008
ESA's Mars Express mission control team are ready to monitor Phoenix's critical entry, descent and landing onto the Martian surface on 26 May 2008.

The Mars Express mission control team have completed major preparations for supporting the entry, descent and landing (EDL) phase of NASA's Phoenix mission to the Red Planet. On 25 May, Mars Express will point towards Phoenix's planned entry trajectory and record signals broadcast from the lander as it plunges through the Martian atmosphere.

The recorded data will serve as a useful and potentially crucial back-up to compare Phoenix's planned and actual descent profiles. Landing is planned for 23:38 UTC, 25 May, which is 01:38 CEST, 26 May.

"We have tested a specially designed slew for our spacecraft, and scheduled a series of data downloads immediately after Phoenix's landing; NASA will receive our recorded data about one hour later," says Michel Denis, Spacecraft Operations Manager at ESOC, ESA's Space Operations Centre, Darmstadt, Germany.

The Mars Express team will monitor the event from the Dedicated Control Room at ESOC.

Effective reuse of on-board lander communications system

Mission controllers will use the MELACOM (Mars Express Lander Communications) system to point towards Phoenix during EDL; the radio instrument was originally intended for communications with the Beagle 2 lander.

Mars Express will perform a high-speed slew as MELACOM tracks Phoenix, rotating about one axis at a speed some two to three times faster than normal; this action has already been tested and confirmed. The orbit phasing of Mars Express was already adjusted at the end of 2007 to provide visibility to Phoenix.

Data recording is scheduled to begin at 23:21 UTC, and run for 26 minutes, until 23:47 UTC.

"Our MELACOM data will enable NASA to confirm the Phoenix lander's descent characteristics, including speed and acceleration through the Mars atmosphere," says Peter Schmitz, Deputy Spacecraft Operations Manager and project lead for Mars Express Phoenix support activities.

MELACOM data will be downloaded to Earth via NASA's Deep Space terminals DSS-15 and DSS-25. After a 15-minute, 20-second light-speed travel time, ESOC will receive the data transmitted from Mars Express, i.e. at 00:40 UTC ( 02:40 CEST). Recorded data will subsequently be downloaded two more times to ensure no loss of packets.

The ESA spacecraft will also fly over Phoenix's intended landing zone, beginning at 06:12 UTC (08:12 CEST) on 26 May and will again monitor signals transmitted up from the surface.

In the following week, Mars Express will monitor Phoenix using MELACOM 14 more times; at least one of these will be used to demonstrate and confirm that the ESA spacecraft can be used as a data relay station for NASA, receiving data from the surface and transmitting test commands to the lander.

This capability has already been trialed between Mars Express and NASA's Mars Exploration Rovers (MER), now operating on the surface.

In the days leading up to the Phoenix landing, NASA and ESA ground stations also cooperated to perform highly sophisticated 'delta-DOR' (delta - Differential One-way Range) interferometry measurements. This enabled a precise determination of whether Phoenix was on track to meet the planned entry point.

This is the first time that ESA has been requested to operationally support NASA with the delta-DOR equipment installed at the Agency's two deep-space tracking stations, in Cebreros, Spain, and New Norcia, Australia.

| alfa
Further information:
http://www.esa.int/SPECIALS/Operations/SEM8KD0YUFF_0.html

More articles from Information Technology:

nachricht New 3-D display takes the eye fatigue out of virtual reality
22.06.2017 | The Optical Society

nachricht Modeling the brain with 'Lego bricks'
19.06.2017 | University of Luxembourg

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>