Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mars Express mission controllers ready for NASA Phoenix landing

21.05.2008
ESA's Mars Express mission control team are ready to monitor Phoenix's critical entry, descent and landing onto the Martian surface on 26 May 2008.

The Mars Express mission control team have completed major preparations for supporting the entry, descent and landing (EDL) phase of NASA's Phoenix mission to the Red Planet. On 25 May, Mars Express will point towards Phoenix's planned entry trajectory and record signals broadcast from the lander as it plunges through the Martian atmosphere.

The recorded data will serve as a useful and potentially crucial back-up to compare Phoenix's planned and actual descent profiles. Landing is planned for 23:38 UTC, 25 May, which is 01:38 CEST, 26 May.

"We have tested a specially designed slew for our spacecraft, and scheduled a series of data downloads immediately after Phoenix's landing; NASA will receive our recorded data about one hour later," says Michel Denis, Spacecraft Operations Manager at ESOC, ESA's Space Operations Centre, Darmstadt, Germany.

The Mars Express team will monitor the event from the Dedicated Control Room at ESOC.

Effective reuse of on-board lander communications system

Mission controllers will use the MELACOM (Mars Express Lander Communications) system to point towards Phoenix during EDL; the radio instrument was originally intended for communications with the Beagle 2 lander.

Mars Express will perform a high-speed slew as MELACOM tracks Phoenix, rotating about one axis at a speed some two to three times faster than normal; this action has already been tested and confirmed. The orbit phasing of Mars Express was already adjusted at the end of 2007 to provide visibility to Phoenix.

Data recording is scheduled to begin at 23:21 UTC, and run for 26 minutes, until 23:47 UTC.

"Our MELACOM data will enable NASA to confirm the Phoenix lander's descent characteristics, including speed and acceleration through the Mars atmosphere," says Peter Schmitz, Deputy Spacecraft Operations Manager and project lead for Mars Express Phoenix support activities.

MELACOM data will be downloaded to Earth via NASA's Deep Space terminals DSS-15 and DSS-25. After a 15-minute, 20-second light-speed travel time, ESOC will receive the data transmitted from Mars Express, i.e. at 00:40 UTC ( 02:40 CEST). Recorded data will subsequently be downloaded two more times to ensure no loss of packets.

The ESA spacecraft will also fly over Phoenix's intended landing zone, beginning at 06:12 UTC (08:12 CEST) on 26 May and will again monitor signals transmitted up from the surface.

In the following week, Mars Express will monitor Phoenix using MELACOM 14 more times; at least one of these will be used to demonstrate and confirm that the ESA spacecraft can be used as a data relay station for NASA, receiving data from the surface and transmitting test commands to the lander.

This capability has already been trialed between Mars Express and NASA's Mars Exploration Rovers (MER), now operating on the surface.

In the days leading up to the Phoenix landing, NASA and ESA ground stations also cooperated to perform highly sophisticated 'delta-DOR' (delta - Differential One-way Range) interferometry measurements. This enabled a precise determination of whether Phoenix was on track to meet the planned entry point.

This is the first time that ESA has been requested to operationally support NASA with the delta-DOR equipment installed at the Agency's two deep-space tracking stations, in Cebreros, Spain, and New Norcia, Australia.

| alfa
Further information:
http://www.esa.int/SPECIALS/Operations/SEM8KD0YUFF_0.html

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>