Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Real Safety through Virtual Reality

20.05.2008
In the project VIERforES – “Virtual and Extended Reality for highest safety and reliability of Embedded Systems” –scientists from the Fraunhofer institutes for Experimental Software Engineering IESE and for Factory Operation and Automation IFF together with the University of Kaiserslautern and Otto-von-Guericke University in Magdeburg are developing clear and easy-to-understand virtual representations of highly complex technical parameters in embedded systems.

In this project, which is funded by the German Federal Ministry of Education and Research BMBF, one of the researchers’ main goals is to make especially properties that are hard to visualize, such as safety and reliability, visible by using state-of-the-art virtual reality processes.

By doing this, they will make it significantly easier to develop systems in many high-tech areas. Prof. Peter Liggesmeyer, director at Fraunhofer IESE, summarizes what the project is expected to do: “Distributed embedded systems are often safety-critical and so complex at the same time that risks are hard to detect and appropriate countermeasures are hard to find. We want to support this through suitable VR technologies in order to make abstract properties tangible“.

Whereas the colleagues from Magdeburg will concentrate on the mechanical and electrotechnical system components, the software portions of embedded systems will be the focus of the partners from Kaiserslautern, who will also support the project with concrete usage scenarios, for example from the area of automotive technology. Prof. Karsten Berns from TU Kaiserslautern emphasizes the innovative approach: ”Thanks to the results from the project, comparing alternative product designs and detecting neuralgic points early on will be possible in the future by taking a few glances into ’cyberspace’“.

The fact that partners from western Germany will also take part in the project initiated in the context of the BMBF initiative “State-of-the-art research and innovation from the new states” is welcome in Kaiserslautern: “It is just that existing competencies complement each other optimally, and only this makes success possible“, says the Vice President for Research and Technology at TU Kaiserslautern, Prof. Burkard Hillebrands. In addition, the project could become the prototype for a successful Germany-wide research collaboration and thus sustainably strengthen Germany’s role as a global market leader in mechanical and plant engineering”, continues Hillebrands.

VIERforES is one of six projects funded by BMBF in the context of its initiative “State-of-the-art research and innovation from the new states”. Of the approx.7.5 million euros for the years 2008 – 2010, 2.5 million euros will go to the University of Kaiserslautern and Fraunhofer IESE in almost equal parts; the rest of the funds will go to Otto-von-Guericke University and to Fraunhofer IFF in Magdeburg.

Patrick Leibbrand | alfa
Further information:
http://www.iese.fraunhofer.de/press

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>