Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Real Safety through Virtual Reality

20.05.2008
In the project VIERforES – “Virtual and Extended Reality for highest safety and reliability of Embedded Systems” –scientists from the Fraunhofer institutes for Experimental Software Engineering IESE and for Factory Operation and Automation IFF together with the University of Kaiserslautern and Otto-von-Guericke University in Magdeburg are developing clear and easy-to-understand virtual representations of highly complex technical parameters in embedded systems.

In this project, which is funded by the German Federal Ministry of Education and Research BMBF, one of the researchers’ main goals is to make especially properties that are hard to visualize, such as safety and reliability, visible by using state-of-the-art virtual reality processes.

By doing this, they will make it significantly easier to develop systems in many high-tech areas. Prof. Peter Liggesmeyer, director at Fraunhofer IESE, summarizes what the project is expected to do: “Distributed embedded systems are often safety-critical and so complex at the same time that risks are hard to detect and appropriate countermeasures are hard to find. We want to support this through suitable VR technologies in order to make abstract properties tangible“.

Whereas the colleagues from Magdeburg will concentrate on the mechanical and electrotechnical system components, the software portions of embedded systems will be the focus of the partners from Kaiserslautern, who will also support the project with concrete usage scenarios, for example from the area of automotive technology. Prof. Karsten Berns from TU Kaiserslautern emphasizes the innovative approach: ”Thanks to the results from the project, comparing alternative product designs and detecting neuralgic points early on will be possible in the future by taking a few glances into ’cyberspace’“.

The fact that partners from western Germany will also take part in the project initiated in the context of the BMBF initiative “State-of-the-art research and innovation from the new states” is welcome in Kaiserslautern: “It is just that existing competencies complement each other optimally, and only this makes success possible“, says the Vice President for Research and Technology at TU Kaiserslautern, Prof. Burkard Hillebrands. In addition, the project could become the prototype for a successful Germany-wide research collaboration and thus sustainably strengthen Germany’s role as a global market leader in mechanical and plant engineering”, continues Hillebrands.

VIERforES is one of six projects funded by BMBF in the context of its initiative “State-of-the-art research and innovation from the new states”. Of the approx.7.5 million euros for the years 2008 – 2010, 2.5 million euros will go to the University of Kaiserslautern and Fraunhofer IESE in almost equal parts; the rest of the funds will go to Otto-von-Guericke University and to Fraunhofer IFF in Magdeburg.

Patrick Leibbrand | alfa
Further information:
http://www.iese.fraunhofer.de/press

More articles from Information Technology:

nachricht Defining the backbone of future mobile internet access
21.07.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

nachricht Researchers create new technique for manipulating polarization of terahertz radiation
20.07.2017 | Brown University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>