Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ames Laboratory puts the "squeeze" on communications technology

03.07.2002


New parallel library allows maximum performance for communication networks



A new message-passing library that makes it possible to extract optimum performance from both workstation and personal computer clusters, as well as from large massively parallel supercomputers has been developed by researchers at the U.S. Department of Energy’s Ames Laboratory. The new library, called MP_Lite, supports and enhances the basic capabilities that most software programs require to communicate between computers.

Although MP_Lite could be scaled up easily, its objective is not to provide all the capabilities of the full message-passing interface, or MPI, standard. MPI is a widely used model that standardizes the syntax and functionality for message-passing programs, allowing a uniform interface from the application to the underlying communication network. Parallel libraries that offer the full MPI standard ease programming problems by reducing the need to repeat work, such as defining consistent data structures, data layouts and methods that implement key algorithms.


“Our goal with MP_Lite is to illustrate how to get better performance in a portable and user-friendly manner and to understand exactly where any inefficiencies in the MPI standard may be coming from,” said David Turner, an Ames Laboratory assistant scientist and the principle investigator working on the MP_Lite project. He explained that the MP_Lite library is smaller and much easier to work with than full MPI libraries. “It’s ideal for performing message-passing research that may eventually be used to improve full MPI implementations and possibly influence the MPI standard,” he said.

Turner noted that it was “mainly frustration” that led him to develop the MP_Lite library. “Most message-passing packages are large and clunky to work with, and are often difficult to install. If you run into any errors at all, they give you very cryptic messages that mean nothing unless you actually wrote the library,” he said. “So a lot of the reason I got into the project was not just to improve the efficiency, but also to make the message-passing more user-friendly.”

Offering an example, Turner said, “If two processors are communicating, and one waits a minute for a response from the other one – well, a minute is a very long time in this context – the library should put out a warning into a log file. But that’s something that’s not done. Most message-passing systems don’t tell you what’s wrong if a communication buffer overflows or a node is waiting for a message that never gets sent. What if there’s a five-minute wait for a message?” he continued. “Something is probably frozen up, so at that point the library should implement an abort and give the user as much information about the current state of the system as possible.” Turner noted that MP_Lite operates with minimal buffering, and warns if there are any potential problems. When possible, MP_Lite will dump warnings to a log file and eventually time-out when a lock-up occurs. “There’s a lot of these user-friendly aspects that I’d like to see put into other message-passing systems,” he said.

In addition to enhancing performance, another goal Turner has for MP_Lite is to tie it directly to a full MPI library. To do so, he’s been working with the DOE’s Argonne National Laboratory and running their MPICH library on top of MP_Lite. “By doing this, we can pass the good performance of MP_Lite on to the full MPI implementation,” he said. “So we combine the best of both, keeping the efficiency of my library and the greater functionality of Argonne’s.”

Turner said he named the library MP_Lite for several reasons. The small size of the library’s code makes it easy to install anywhere – it compiles in under a minute. And there’s much less code, so it’s more streamlined than MPI. It also has its own syntax, which is simpler and can be used in place of the MPI syntax. The other reason Turner likes calling the library MP_Lite is the answer he’s able to give when responding to people who ask him, “I use this MPI function; why isn’t it in your library?” He simply replies, “Well, it’s ‘lite’ ”

Turner admits that the work on MP_Lite suits him well. “I like the puzzle aspect of it. I like tuning codes and getting them to run on a scaling computer, and trying to squeeze more performance out of what’s there,” he said.

The research is funded by DOE’s office of Mathematical Information and Computer Sciences. Ames Laboratory is operated for the DOE by Iowa State University. The Lab conducts research into various areas of national concern, including energy resources, high-speed computer design, environmental cleanup and restoration, and the synthesis and study of new materials.

Note: MP_Lite may be downloaded free of charge from: http://www.scl.ameslab.gov/Projects/MP_Lite/

David Turner | EurekAlert!
Further information:
http://www.scl.ameslab.gov/Projects/MP_Lite/

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>