Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ames Laboratory puts the "squeeze" on communications technology

03.07.2002


New parallel library allows maximum performance for communication networks



A new message-passing library that makes it possible to extract optimum performance from both workstation and personal computer clusters, as well as from large massively parallel supercomputers has been developed by researchers at the U.S. Department of Energy’s Ames Laboratory. The new library, called MP_Lite, supports and enhances the basic capabilities that most software programs require to communicate between computers.

Although MP_Lite could be scaled up easily, its objective is not to provide all the capabilities of the full message-passing interface, or MPI, standard. MPI is a widely used model that standardizes the syntax and functionality for message-passing programs, allowing a uniform interface from the application to the underlying communication network. Parallel libraries that offer the full MPI standard ease programming problems by reducing the need to repeat work, such as defining consistent data structures, data layouts and methods that implement key algorithms.


“Our goal with MP_Lite is to illustrate how to get better performance in a portable and user-friendly manner and to understand exactly where any inefficiencies in the MPI standard may be coming from,” said David Turner, an Ames Laboratory assistant scientist and the principle investigator working on the MP_Lite project. He explained that the MP_Lite library is smaller and much easier to work with than full MPI libraries. “It’s ideal for performing message-passing research that may eventually be used to improve full MPI implementations and possibly influence the MPI standard,” he said.

Turner noted that it was “mainly frustration” that led him to develop the MP_Lite library. “Most message-passing packages are large and clunky to work with, and are often difficult to install. If you run into any errors at all, they give you very cryptic messages that mean nothing unless you actually wrote the library,” he said. “So a lot of the reason I got into the project was not just to improve the efficiency, but also to make the message-passing more user-friendly.”

Offering an example, Turner said, “If two processors are communicating, and one waits a minute for a response from the other one – well, a minute is a very long time in this context – the library should put out a warning into a log file. But that’s something that’s not done. Most message-passing systems don’t tell you what’s wrong if a communication buffer overflows or a node is waiting for a message that never gets sent. What if there’s a five-minute wait for a message?” he continued. “Something is probably frozen up, so at that point the library should implement an abort and give the user as much information about the current state of the system as possible.” Turner noted that MP_Lite operates with minimal buffering, and warns if there are any potential problems. When possible, MP_Lite will dump warnings to a log file and eventually time-out when a lock-up occurs. “There’s a lot of these user-friendly aspects that I’d like to see put into other message-passing systems,” he said.

In addition to enhancing performance, another goal Turner has for MP_Lite is to tie it directly to a full MPI library. To do so, he’s been working with the DOE’s Argonne National Laboratory and running their MPICH library on top of MP_Lite. “By doing this, we can pass the good performance of MP_Lite on to the full MPI implementation,” he said. “So we combine the best of both, keeping the efficiency of my library and the greater functionality of Argonne’s.”

Turner said he named the library MP_Lite for several reasons. The small size of the library’s code makes it easy to install anywhere – it compiles in under a minute. And there’s much less code, so it’s more streamlined than MPI. It also has its own syntax, which is simpler and can be used in place of the MPI syntax. The other reason Turner likes calling the library MP_Lite is the answer he’s able to give when responding to people who ask him, “I use this MPI function; why isn’t it in your library?” He simply replies, “Well, it’s ‘lite’ ”

Turner admits that the work on MP_Lite suits him well. “I like the puzzle aspect of it. I like tuning codes and getting them to run on a scaling computer, and trying to squeeze more performance out of what’s there,” he said.

The research is funded by DOE’s office of Mathematical Information and Computer Sciences. Ames Laboratory is operated for the DOE by Iowa State University. The Lab conducts research into various areas of national concern, including energy resources, high-speed computer design, environmental cleanup and restoration, and the synthesis and study of new materials.

Note: MP_Lite may be downloaded free of charge from: http://www.scl.ameslab.gov/Projects/MP_Lite/

David Turner | EurekAlert!
Further information:
http://www.scl.ameslab.gov/Projects/MP_Lite/

More articles from Information Technology:

nachricht PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems
11.12.2017 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

nachricht Rules for superconductivity mirrored in 'excitonic insulator'
08.12.2017 | Rice University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>