Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ames Laboratory puts the "squeeze" on communications technology

03.07.2002


New parallel library allows maximum performance for communication networks



A new message-passing library that makes it possible to extract optimum performance from both workstation and personal computer clusters, as well as from large massively parallel supercomputers has been developed by researchers at the U.S. Department of Energy’s Ames Laboratory. The new library, called MP_Lite, supports and enhances the basic capabilities that most software programs require to communicate between computers.

Although MP_Lite could be scaled up easily, its objective is not to provide all the capabilities of the full message-passing interface, or MPI, standard. MPI is a widely used model that standardizes the syntax and functionality for message-passing programs, allowing a uniform interface from the application to the underlying communication network. Parallel libraries that offer the full MPI standard ease programming problems by reducing the need to repeat work, such as defining consistent data structures, data layouts and methods that implement key algorithms.


“Our goal with MP_Lite is to illustrate how to get better performance in a portable and user-friendly manner and to understand exactly where any inefficiencies in the MPI standard may be coming from,” said David Turner, an Ames Laboratory assistant scientist and the principle investigator working on the MP_Lite project. He explained that the MP_Lite library is smaller and much easier to work with than full MPI libraries. “It’s ideal for performing message-passing research that may eventually be used to improve full MPI implementations and possibly influence the MPI standard,” he said.

Turner noted that it was “mainly frustration” that led him to develop the MP_Lite library. “Most message-passing packages are large and clunky to work with, and are often difficult to install. If you run into any errors at all, they give you very cryptic messages that mean nothing unless you actually wrote the library,” he said. “So a lot of the reason I got into the project was not just to improve the efficiency, but also to make the message-passing more user-friendly.”

Offering an example, Turner said, “If two processors are communicating, and one waits a minute for a response from the other one – well, a minute is a very long time in this context – the library should put out a warning into a log file. But that’s something that’s not done. Most message-passing systems don’t tell you what’s wrong if a communication buffer overflows or a node is waiting for a message that never gets sent. What if there’s a five-minute wait for a message?” he continued. “Something is probably frozen up, so at that point the library should implement an abort and give the user as much information about the current state of the system as possible.” Turner noted that MP_Lite operates with minimal buffering, and warns if there are any potential problems. When possible, MP_Lite will dump warnings to a log file and eventually time-out when a lock-up occurs. “There’s a lot of these user-friendly aspects that I’d like to see put into other message-passing systems,” he said.

In addition to enhancing performance, another goal Turner has for MP_Lite is to tie it directly to a full MPI library. To do so, he’s been working with the DOE’s Argonne National Laboratory and running their MPICH library on top of MP_Lite. “By doing this, we can pass the good performance of MP_Lite on to the full MPI implementation,” he said. “So we combine the best of both, keeping the efficiency of my library and the greater functionality of Argonne’s.”

Turner said he named the library MP_Lite for several reasons. The small size of the library’s code makes it easy to install anywhere – it compiles in under a minute. And there’s much less code, so it’s more streamlined than MPI. It also has its own syntax, which is simpler and can be used in place of the MPI syntax. The other reason Turner likes calling the library MP_Lite is the answer he’s able to give when responding to people who ask him, “I use this MPI function; why isn’t it in your library?” He simply replies, “Well, it’s ‘lite’ ”

Turner admits that the work on MP_Lite suits him well. “I like the puzzle aspect of it. I like tuning codes and getting them to run on a scaling computer, and trying to squeeze more performance out of what’s there,” he said.

The research is funded by DOE’s office of Mathematical Information and Computer Sciences. Ames Laboratory is operated for the DOE by Iowa State University. The Lab conducts research into various areas of national concern, including energy resources, high-speed computer design, environmental cleanup and restoration, and the synthesis and study of new materials.

Note: MP_Lite may be downloaded free of charge from: http://www.scl.ameslab.gov/Projects/MP_Lite/

David Turner | EurekAlert!
Further information:
http://www.scl.ameslab.gov/Projects/MP_Lite/

More articles from Information Technology:

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

nachricht Internet of things made simple: One sensor package does work of many
11.05.2017 | Carnegie Mellon University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>