Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From a set of formulas to visible changes in liver cancer

19.05.2008
With systems biology methods, CancerSys investigates molecular- and cell-biological processes in the formation of tumors in the liver

Systems Biology is a young field with the overall aim of creating a holistic picture of dynamic life processes with regard to all levels - from the genome via the proteome and the organisation of the cell organelles all the way to the complete cell or even an entire organism.

In doing so, Systems Biology takes into consideration the dynamic interplay of the components involved. In order to achieve this high aspiration, Systems Biology combines quantitative methods used in molecular biology with knowledge gathered in mathematics, informatics and systems science.

The HepatoSys consortium was launched in 2004 as the first large and interdisciplinary network in the field of Systems Biology. Since then, more than 40 research groups all over Germany have applied themselves to the investigation of molecular- and cell-biological processes in the liver cell (hepatocyte). "In the course of the last few years we have laid the foundation for a systems biology investigation of hepatocytes", says CancerSys coordinator Prof. Dr. Jan Hengstler of the University of Dortmund.

Computer models for the simulation of signal transmission pathways were developed as well as standardized cell culture conditions and common process specifications to form a base for quantitative analysis of the processes within the cell and also for interdisciplinary collaboration. "On this basis, we can now turn toward more specific questions such as the processes involved in the evolution of liver cancer", explains Dr. Hengstler who has a leading part in the HepatoSys network as the coordinator of the cell biology platform.

CancerSys is aiming at two particular signal paths known to play a role in the development of cancer if they get out of control, namely, the beta-catenin- and the ras-signal paths. Both regulate the reproduction (proliferation) of liver cells and have an influence on their gene activity. The beta-catenin-path is particularly relevant in the center of the lobe of the liver whereas the ras-signals are dominant in the periportal area, i.e. close to the portal vein which is the gateway for blood entering the liver.

The objective of the CancerSys consortium is to construct dynamic models of these two signal paths and their interaction and to then integrate them into a three-dimensional simulation of the liver. "We created mathematical models on the basis of quantitative molecular- and cell-biological tests and then built a bridge from this set of formulas to the visible changes caused by the cancerous process in the liver", Hengstler said, in explaining their research objective. By means of this hitherto unique methodical approach, it is possible to graphically reconstruct which consequences a change - i.e. through gene mutations, viral diseases or toxic substances such as alcohol and certain medications - involves in the network of signal paths and can thus contribute to the development of cancer. Impressive first simulations can be viewed at http://inria.livertumor.hoehme.com.

The CancerSys research project was given the highest possible rating by the European Union brain-trust and is expected to take up work early in 2009. In the first instance, nine project partners with their research groups are participating. Four of them will work experimentally, four will work theoretically and one will work in both modes. Most of the research teams involved are from the HepatoSys consortium as well as from other German systems biology networks. International groups from Europe and the US will also take part. "Not only do we expect substantial progress from the network on the subject of liver cancer," says Hengstler. "CancerSys also signifies an expansion and better visibility for German systems biology research, especially for HepatoSys, on an international level". Thus the activities of CancerSys will have positive effects on Germany as a research location.

Ute Heisner | alfa
Further information:
http://www.sbmc08.de

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>