Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Berkeley Lab Researchers Propose a New Breed of Supercomputers

08.05.2008
Three researchers from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have proposed an innovative way to improve global climate change predictions by using a supercomputer with low-power embedded microprocessors, an approach that would overcome limitations posed by today’s conventional supercomputers.
Berkeley Lab has signed a collaboration agreement with Tensilica®, Inc. to explore the use of Tensilica’s Xtensa processor cores as the basic building blocks in a massively parallel system design. Tensilica’s Xtensa processor is about 400 times more efficient in floating point operations per watt than the conventional server processor chip shown here.

In a paper published in the May issue of the International Journal of High Performance Computing Applications, Michael Wehner and Lenny Oliker of Berkeley Lab’s Computational Research Division, and John Shalf of the National Energy Research Scientific Computing Center (NERSC) lay out the benefit of a new class of supercomputers for modeling climate conditions and understanding climate change. Using the embedded microprocessor technology used in cell phones, iPods, toaster ovens and most other modern day electronic conveniences, they propose designing a cost-effective machine for running these models and improving climate predictions.

In April, Berkeley Lab signed a collaboration agreement with Tensilica®, Inc. to explore such new design concepts for energy-efficient high-performance scientific computer systems. The joint effort is focused on novel processor and systems architectures using large numbers of small processor cores, connected together with optimized links, and tuned to the requirements of highly-parallel applications such as climate modeling.

Understanding how human activity is changing global climate is one of the great scientific challenges of our time. Scientists have tackled this issue by developing climate models that use the historical data of factors that shape the earth’s climate, such as rainfall, hurricanes, sea surface temperatures and carbon dioxide in the atmosphere. One of the greatest challenges in creating these models, however, is to develop accurate cloud simulations.

Although cloud systems have been included in climate models in the past, they lack the details that could improve the accuracy of climate predictions. Wehner, Oliker and Shalf set out to establish a practical estimate for building a supercomputer capable of creating climate models at 1-kilometer (km) scale. A cloud system model at the 1-km scale would provide rich details that are not available from existing models.

To develop a 1-km cloud model, scientists would need a supercomputer that is 1,000 times more powerful than what is available today, the researchers say. But building a supercomputer powerful enough to tackle this problem is a huge challenge.

Historically, supercomputer makers build larger and more powerful systems by increasing the number of conventional microprocessors — usually the same kinds of microprocessors used to build personal computers. Although feasible for building computers large enough to solve many scientific problems, using this approach to build a system capable of modeling clouds at a 1-km scale would cost about $1 billion. The system also would require 200 megawatts of electricity to operate, enough energy to power a small city of 100,000 residents.

Berkeley Lab scientists Michael Wehner, Lenny Oliker and John Shalf have made the case that using a supercomputer with low-power embedded microprocessors would overcome limitations posed by today’s conventional supercomputers and greatly benefit such challenges as modeling climate conditions and understanding global climate change.

In their paper, “Towards Ultra-High Resolution models of Climate and Weather,” the researchers present a radical alternative that would cost less to build and require less electricity to operate. They conclude that a supercomputer using about 20 million embedded microprocessors would deliver the results and cost $75 million to construct. This “climate computer” would consume less than 4 megawatts of power and achieve a peak performance of 200 petaflops.

“Without such a paradigm shift, power will ultimately limit the scale and performance of future supercomputing systems, and therefore fail to meet the demanding computational needs of important scientific challenges like the climate modeling,” Shalf said.

The researchers arrive at their findings by extrapolating performance data from the Community Atmospheric Model (CAM). CAM, developed at the National Center for Atmospheric Research in Boulder, Colorado, is a series of global atmosphere models commonly used by weather and climate researchers.

The “climate computer” is not merely a concept. Wehner, Oliker and Shalf, along with researchers from UC Berkeley, are working with scientists from Colorado State University to build a prototype system in order to run a new global atmospheric model developed at Colorado State.

“What we have demonstrated is that in the exascale computing regime, it makes more sense to target machine design for specific applications,” Wehner said. “It will be impractical from a cost and power perspective to build general-purpose machines like today’s supercomputers.”

Under the agreement with Tensilica, the team will use Tensilica’s Xtensa LX extensible processor cores as the basic building blocks in a massively parallel system design. Each processor will dissipate a few hundred milliwatts of power, yet deliver billions of floating point operations per second and be programmable using standard programming languages and tools. This equates to an order-of-magnitude improvement in floating point operations per watt, compared to conventional desktop and server processor chips. The small size and low power of these processors allows tight integration at the chip, board and rack level and scaling to millions of processors within a power budget of a few megawatts.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

Ucilia Wang | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>