Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The grid steps up a gear with EGEE III

08.05.2008
Enabling Grids for E-sciencE (EGEE) is the largest multi-disciplinary grid infrastructure in the world. Finding the Higgs boson; saving lives; addressing the energy problem; feeding the planet - the grid is swiftly becoming one of the extraordinary tools scientists use everyday. This month sees the start of the third phase of the project, EGEE-III, which is revolutionising the way data is analysed, stored and shared.

EGEE-III aims to expand and optimise the Grid infrastructure, which is currently used over 150,000 times per day by users working together on scientific domains ranging from biomedicine to fusion science. Co-funded by the European Commission, EGEE III brings together more than 120 organisations to produce a reliable and scalable computing resource available to the European and global research community. At present, it consists of 250 sites in 48 countries and more than 60,000 CPUs with over 20 Petabytes of storage, available to some 8,000 users 24 hours a day, 7 days a week.

These figures considerably exceed the goals planned for the end of the first four years of the EGEE programme, demonstrating the enthusiasm within the scientific community for EGEE and grid solutions. Ultimately EGEE would like to see a unified, interoperable grid infrastructure, and with this goal in mind is working closely with other European and world wide grid projects to help define the standards to make this happen.

One of the founding cases for EGEE and the grid came from the search for the Higgs boson, or “God Particle”. The computing demands of the Large Hadron Collider, the machine designed to search for the elusive particle, are presenting an unprecedented challenge, with over 15 Petabytes of data to be generated and processed each year. Analysing such a large amount of information will require computing facilities that don’t exist in a single location, but the grid can distribute the workload, and let researchers around the world work together on key problems.

The EGEE infrastructure has also been used to search through over 500,000 drug-like molecules in just a few weeks, to find drugs that will fight against bird flu. Finding potential solutions on the grid before going into the lab means huge numbers of unsuitable molecules can be ruled out without wasting precious time and physical resources. In the instance of a mutating virus this time-saving step could be life-saving.

Other scientists are using the grid to understand the complexity of muscle cells, calculate the dynamics of dark energy, simulate cell processes, predict protein structure, study pollution in the atmosphere and search for the genes that help wheat adapt to new threats. EGEE is opening up unprecedented amounts of computing power to researches across the globe and making it easy for them to share data and results.

The tools and techniques used in one discipline can often be recycled and used elsewhere, by other scientists, or even in the world of business and finance. where EGEE is being used in problems such as finding new oil reserves, simulating market behaviour and mapping taxation policy.

EGEE will hold its next conference, EGEE’08, in Istanbul, Turkey, 22-26 September 2008 (www.eu-egee.org/egee08). The conference will provide the perfect opportunity for both business and academic sectors to network with the EGEE communities, collaborating projects, developers, decision makers alike, to realize the vision of a sustainable, interoperable European grid.

Sarah Purcell | alfa
Further information:
http://www.eu-egee.org/

More articles from Information Technology:

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

nachricht Seeing the next dimension of computer chips
11.10.2017 | Osaka University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

How Obesity Promotes Breast Cancer

20.10.2017 | Life Sciences

How the smallest bacterial pathogens outwit host immune defences by stealth mechanisms

20.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>