Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RFID Testbed Rapidly Assesses New Antenna Designs

07.05.2008
Researchers have designed a system capable of simultaneously measuring hundreds of radio frequency identification (RFID) tags and rapidly testing new RFID tag prototypes.

“This testbed allows us to measure the signal strength of tags hidden behind other tags and to rapidly test unique antenna configurations and multiple antennas without actually constructing new tags for each experiment,” said Gregory Durgin, an assistant professor in the Georgia Institute of Technology’s School of Electrical and Computer Engineering.

The research, funded by the National Science Foundation and conducted with former graduate student Anil Rohatgi and current graduate student Joshua Griffin, was presented in April at the IEEE International Conference on RFID.

RFID tags are used for applications that include inventory management, package tracking, toll collection, passport identification and airport luggage security. Passive tags include an integrated circuit for storing and processing information, and an antenna that responds to radio waves transmitted from an RFID reader. The tag absorbs some of the radio frequency energy from the reader signal and reflects it back as a return signal delivering information from the tag’s memory, a technique called backscatter.

If several RFID tags are in the vicinity of a reader, the reader usually communicates with the tag transmitting the most powerful signal first and then puts it to ‘‘sleep’’ to prevent it from transmitting repeatedly. Then the reader moves to the next most powerful signal, and so on. This process can be very time-consuming.

“We designed a really inexpensive, simple anti-collision system that transmits multiple unique signals back to us simultaneously without this complicated back and forth process,” said Durgin.

The system includes three parts – a transmitter, receiver and emulator. The emulator simulates the activity of an integrated circuit. The transmitter sends a radio signal to the antenna. By attaching the emulator to an antenna, a unique spread spectrum signal is transmitted to the receiver.

Each antenna signal can then be separated from the others, allowing his team to simultaneously measure the signals from multiple tags. Their experiments have shown they can measure the power strength and phase of up to 256 antennas in the field of view, which is an area in front of the reader of approximately 20 feet by 20 feet.

“To test new signaling schemes and frequencies, we just have to change the emulator’s signal – we don’t have to fabricate a new chip that could cost $100,000 in a silicon foundry,” he added. “We can also evaluate multiple custom antennas in numerous configurations in realistic tag environments for only a fraction of the time and cost of previous methods.”

Testing multiple configurations is important because RFID readability and antenna power strength can be affected by the relative position and orientation of the tag antenna and the reader.

The researchers designed the testbed for measurements at 915 megahertz, a common ultra-high frequency for backscatter RFID applications. They are currently expanding the system to test antennas at higher frequencies – up to 5.7 gigahertz.

“At higher frequencies, even though the tag is physically stationary, you are electromagnetically lifting the antenna signal off the object and it starts to work better,” he said. “Plus, at higher frequencies, smaller antennas can be constructed, which means more antennas can be placed on a tag to produce more energy for communications.”

The tags usually require a reader to be within a foot of the chip, but operating at higher frequencies could greatly improve the range and reliability of the RFID tags, according to Durgin.

“This testbed is just the beginning of our ability to characterize the performance of different RFID tag antennas in a real channel and push these technologies to higher frequencies, longer read ranges and overall higher reliability,” he added.

Technical Contact: Gregory Durgin (404-894-2951); E-mail: (gregory.durgin@ece.gatech.edu)

Abby Vogel | newswise
Further information:
http://www.gatech.edu

More articles from Information Technology:

nachricht Powerful IT security for the car of the future – research alliance develops new approaches
25.05.2018 | Universität Ulm

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>