Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RFID Testbed Rapidly Assesses New Antenna Designs

07.05.2008
Researchers have designed a system capable of simultaneously measuring hundreds of radio frequency identification (RFID) tags and rapidly testing new RFID tag prototypes.

“This testbed allows us to measure the signal strength of tags hidden behind other tags and to rapidly test unique antenna configurations and multiple antennas without actually constructing new tags for each experiment,” said Gregory Durgin, an assistant professor in the Georgia Institute of Technology’s School of Electrical and Computer Engineering.

The research, funded by the National Science Foundation and conducted with former graduate student Anil Rohatgi and current graduate student Joshua Griffin, was presented in April at the IEEE International Conference on RFID.

RFID tags are used for applications that include inventory management, package tracking, toll collection, passport identification and airport luggage security. Passive tags include an integrated circuit for storing and processing information, and an antenna that responds to radio waves transmitted from an RFID reader. The tag absorbs some of the radio frequency energy from the reader signal and reflects it back as a return signal delivering information from the tag’s memory, a technique called backscatter.

If several RFID tags are in the vicinity of a reader, the reader usually communicates with the tag transmitting the most powerful signal first and then puts it to ‘‘sleep’’ to prevent it from transmitting repeatedly. Then the reader moves to the next most powerful signal, and so on. This process can be very time-consuming.

“We designed a really inexpensive, simple anti-collision system that transmits multiple unique signals back to us simultaneously without this complicated back and forth process,” said Durgin.

The system includes three parts – a transmitter, receiver and emulator. The emulator simulates the activity of an integrated circuit. The transmitter sends a radio signal to the antenna. By attaching the emulator to an antenna, a unique spread spectrum signal is transmitted to the receiver.

Each antenna signal can then be separated from the others, allowing his team to simultaneously measure the signals from multiple tags. Their experiments have shown they can measure the power strength and phase of up to 256 antennas in the field of view, which is an area in front of the reader of approximately 20 feet by 20 feet.

“To test new signaling schemes and frequencies, we just have to change the emulator’s signal – we don’t have to fabricate a new chip that could cost $100,000 in a silicon foundry,” he added. “We can also evaluate multiple custom antennas in numerous configurations in realistic tag environments for only a fraction of the time and cost of previous methods.”

Testing multiple configurations is important because RFID readability and antenna power strength can be affected by the relative position and orientation of the tag antenna and the reader.

The researchers designed the testbed for measurements at 915 megahertz, a common ultra-high frequency for backscatter RFID applications. They are currently expanding the system to test antennas at higher frequencies – up to 5.7 gigahertz.

“At higher frequencies, even though the tag is physically stationary, you are electromagnetically lifting the antenna signal off the object and it starts to work better,” he said. “Plus, at higher frequencies, smaller antennas can be constructed, which means more antennas can be placed on a tag to produce more energy for communications.”

The tags usually require a reader to be within a foot of the chip, but operating at higher frequencies could greatly improve the range and reliability of the RFID tags, according to Durgin.

“This testbed is just the beginning of our ability to characterize the performance of different RFID tag antennas in a real channel and push these technologies to higher frequencies, longer read ranges and overall higher reliability,” he added.

Technical Contact: Gregory Durgin (404-894-2951); E-mail: (gregory.durgin@ece.gatech.edu)

Abby Vogel | newswise
Further information:
http://www.gatech.edu

More articles from Information Technology:

nachricht World first: 'Storing lightning inside thunder'
18.09.2017 | University of Sydney

nachricht New software turns mobile-phone accessory into breathing monitor
14.09.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>