Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silicon quantum computer

06.05.2008
Keio university researchers are working on a project to produce a revolutionary quantum computer using 'silicon', the same material as present classical computers, which can work as a bridge between classical and quantum mechanics.
Principal Investigator : Kohei ITOH
Faculty of Science and Technology, Keio University
Keywords : Quantum computer, nanotechnology, unprecedented technology, information processing
Outline :
The quantum computer based on silicon is designed and developed. Present computers work on the basis of the law of the classical mechanics that Newton and Maxwell established. On the other hand, a computer operating with the absolutely new concept based on the law of the quantum mechanics that Einstein et al. found in the 20th century is a quantum computer.

Its implementation requires not just understanding of the quantum mechanics from its basics but also knowledge and technology to integrate creatively mathematical computer science and nanotechnology at an atomic level. We are hoping to produce such a revolutionary quantum computer by using 'silicon', the same material as present classical computers are made, as it works as a bridge between classical and quantum mechanics.

Expected outcome :
Expected outcome from this research project is a dream computer that transforms a part of impossibility of present computers into the possible.
Total number of researchers : 20
Duration : 2002.10 ~ 2031.03
Main collaborative researchers :
Keio University : Toshiharu SAIKI
Keio University : Mikio ETO
Keio University : Eiji SAITOH
Collaborative organizations :
Stanford University
Technical University of Munich
Simon Fraser university
For research inquiries: crp@info.keio.ac.jp
For media inquiries: m-koho@adst.keio.ac.jp

Center for Research Promotion | ResearchSEA
Further information:
http://www.keio.ac.jp/english/research/atoz.html
http://www.researchsea.com

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>