Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Network Supported Service Orientation – Well New at the FOKUS Future Internet Lab

02.05.2008
Fraunhofer FOKUS is one of the first research partners to use Cisco System’s AXP/Javalin Router for Future Internet Development
The Fraunhofer Institute FOKUS in Berlin is one of the first
research partners to use AXP/Javalin modules as part of the latest generation of Cisco Integrated Services Routers (ISR). This new router generation enables researchers and developers to implement complex network functionalities directly in network nodes – with the aim of providing direct network support for services and business applications through comprehensive self-management of central network nodes and standardized interfaces.

At the Fraunhofer FOKUS Future Internet Lab a number of FOKUS working groups are engaged on the development of future Internet structures based on the principles of service orientation that will integrate infrastructure components and applications in one single seamless concept and make network administration and use much easier.

“With this new router generation we can now intervene flexibly and directly in the functionality of lower network levels,“ says Dr. Tanja Zseby, head of Network Research at Fraunhofer FOKUS, commenting on the project. “Our aim is to introduce a maximum level of ‘autonomy’ into networks so that we can reduce administration time and effort while also using autonomously acting networks or network components and standardized interfaces to support applications at higher network levels – and also to make them more secure.”

FOKUS researchers are engaged on a broad array of projects to provide solutions that facilitate services and applications through targeted network support. Working in the sense of service-oriented architecture (SOA) Fraunhofer FOKUS is taking Service Oriented Network Architecture (SONA), an architectural approach pioneered by Cisco Systems, to orchestrate networks from the IT component level to the applications level.

“By embracing the Service Oriented Network approach we are making
a considerable advance on the current SOA approach which is mainly focussed on application levels”, says Prof. Radu Popescu-Zeletin, director of the Fraunhofer Institute FOKUS, explaining the underlying philosophy. “Only by including the network infrastructure in service orientation we can realize and manage complex applications like the planned ‘Service115’.”

Other FOKUS research groups are working on connecting up developments on the lower network levels with the higher-level services and applications. “The new router architecture enables a totally new distribution of service and application logic which means that both the networks themselves and the applications can be given a much higher degree of efficiency. Servers and clients are less loaded and users can appreciate clearly improved reaction times,” says Dr. Stephan Steglich, head of the Open Communication Systems division at the Fraunhofer Institute FOKUS, explaining the benefits of SONA at application level.

The Future Internet Lab is the coordination point for the broad array of activities pursued by the Fraunhofer Institute FOKUS – including R&D on ‘Autonomic Communication’, ‘Next Generation Network Infrastructure’ and ‘Integrated System and Test Development’ or ‘Service Oriented and Mobile Computing’.

Dr. Gudrun Quandel | alfa
Further information:
http://www.cisco.com/en/US/products/ps9701/index.html
http://www.fokus.fraunhofer.de/bereichsseiten/kompetenzzentrum/net/projekte.php

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>