Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Integrating embedded systems

28.04.2008
Embedded digital control systems are powerful and ubiquitous in the technologies we use, but getting them to cooperate is difficult. That situation is changing.

Researchers at the EU-funded DECOS project say they have created tools to allow such embedded systems to operate more smoothly together, a benefit to industry and ultimately to users who depend on the technologies to operate in a safe and predictable manner.

The use of embedded system controls is increasing apace, with expensive cars containing up to 80 engine control units (ECUs). They can range from the simple, like the smarts in your digital watch, to the critical, like the fly-by-wire systems of modern jets. We entrust them with our lives in our cars and trains.

Already, embedded systems account for half of the revenue in the computing market, and almost every technical advance, from ABS brakes to personal video recorders to avionics, rely on them.

The problem is, modern embedded systems often behave like individualists. This behaviour can be a result of the development process. Software can be the work of different programmers. Different manufacturers may develop the design specifications and interfaces.

The result is federated, often autonomous modules that must co-operate to achieve an overall goal, and to avoid ultimately endangering life or property.

Now, we’re talking
The integrator – say, a car company or aircraft manufacturer – wants embedded systems to talk the same language using well-defined linking interfaces, and to perform in a predictable way under all circumstances. But this goal is complex and costly, and can often result in unreliable performance.

“The idea behind [our research] was to fight the growing complexity of distributed architectures,” says Manfred Gruber from Austrian Research Centres (ARC), and coordinator of the DECOS project. “Each new function in a car needs a new ECU, and creates a highly federated structure with maybe 70 ECUs or more.”

This situation means modern, co-operating embedded systems are difficult to develop, and very difficult to test and maintain.

“We want to reduce the number of necessary processors to a few, integrated systems,” says Erwin Schoitsch, project deputy coordinator, also from ARC. “But if you integrate several applications – some safety critical, some not – you have to make sure they do not interfere with each other.”

The DECOS team sought to achieve these goals by developing a dependable middleware of high-level services based on several time-triggered core protocol services: time-triggered architecture, layered FlexRay and time-triggered Ethernet.

These time-triggered protocols were developed to respond to safety-critical applications requirements, with a special focus on real-time applications. The development means lower costs and higher protocol efficiency and predictability.

DECOS developed the middleware architecture, components and tools for design, development, deployment, diagnosis, and validation and verification.

The project created a prototype tool-chain and test-bench, guiding the complete process, from model to deployment. The package includes validation and certification support, as well as hardware and software components and basic software building blocks.

DECOS test-bench
For example, the generic test-bench guides engineers through the verification and validation process, and supports a modular verification process.

“It provides a framework, with some new specific tools and the integration of existing external tools and safety standards,” says Schoitsch.

To validate the approach, DECOS applied their results to three vital application fields for embedded systems: automotive, avionics and industrial control.

These application demonstrators come with domain-specific tests and established the applicability of the DECOS middleware and tools.

DECOS’ architecture for automotive systems work with such functions as adaptive lighting and door positioning. For industrial control, the DECOS architecture helped to suppress critical vibrations when nano-imprinting.

Within the aerospace domain, the DECOS team developed a demonstrator for a shift in airplane flap control. Flaps give an aircraft its lift at lower speeds. DECOS shifted the current state of the art – a mechanic synchronisation control – to all-electronic synchronisation.

“It’s a long-term proposition, but we demonstrated that it was feasible,” says Schoitsch.

Safety-critical avionics systems are a critical way to demonstrate the capabilities of the DECOS tools. But the project’s results can be used anywhere, from trains to medical systems, mechatronics or robotics.

TTTech, one of the partners, developed and will now commercialise a time-triggered Ethernet system. The tool-bench has led to the development of another new product, which was integrated into the Certified Software Factory developed by Esterel Technologies.

DECOS also led to a spin-off by the Budapest University of Technology and Economics. Several spin-off and follow-up projects, such as MOGENTES, again run by ARC, are planned.

Leading lights
The project took 42 months to complete, was funded with €15m and involved 18 of Europe’s leading companies. Global players such as Infineon, Airbus, Thales, EADS, Liebherr Aerospace, Audi, Fiat, and Hella were involved.

Ahmed ElAmin | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89689

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

New discovery: Common jellyfish is actually two species

22.11.2017 | Life Sciences

Researchers discover specific tumor environment that triggers cells to metastasize

22.11.2017 | Life Sciences

A material with promising properties

22.11.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>