Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Integrating embedded systems

28.04.2008
Embedded digital control systems are powerful and ubiquitous in the technologies we use, but getting them to cooperate is difficult. That situation is changing.

Researchers at the EU-funded DECOS project say they have created tools to allow such embedded systems to operate more smoothly together, a benefit to industry and ultimately to users who depend on the technologies to operate in a safe and predictable manner.

The use of embedded system controls is increasing apace, with expensive cars containing up to 80 engine control units (ECUs). They can range from the simple, like the smarts in your digital watch, to the critical, like the fly-by-wire systems of modern jets. We entrust them with our lives in our cars and trains.

Already, embedded systems account for half of the revenue in the computing market, and almost every technical advance, from ABS brakes to personal video recorders to avionics, rely on them.

The problem is, modern embedded systems often behave like individualists. This behaviour can be a result of the development process. Software can be the work of different programmers. Different manufacturers may develop the design specifications and interfaces.

The result is federated, often autonomous modules that must co-operate to achieve an overall goal, and to avoid ultimately endangering life or property.

Now, we’re talking
The integrator – say, a car company or aircraft manufacturer – wants embedded systems to talk the same language using well-defined linking interfaces, and to perform in a predictable way under all circumstances. But this goal is complex and costly, and can often result in unreliable performance.

“The idea behind [our research] was to fight the growing complexity of distributed architectures,” says Manfred Gruber from Austrian Research Centres (ARC), and coordinator of the DECOS project. “Each new function in a car needs a new ECU, and creates a highly federated structure with maybe 70 ECUs or more.”

This situation means modern, co-operating embedded systems are difficult to develop, and very difficult to test and maintain.

“We want to reduce the number of necessary processors to a few, integrated systems,” says Erwin Schoitsch, project deputy coordinator, also from ARC. “But if you integrate several applications – some safety critical, some not – you have to make sure they do not interfere with each other.”

The DECOS team sought to achieve these goals by developing a dependable middleware of high-level services based on several time-triggered core protocol services: time-triggered architecture, layered FlexRay and time-triggered Ethernet.

These time-triggered protocols were developed to respond to safety-critical applications requirements, with a special focus on real-time applications. The development means lower costs and higher protocol efficiency and predictability.

DECOS developed the middleware architecture, components and tools for design, development, deployment, diagnosis, and validation and verification.

The project created a prototype tool-chain and test-bench, guiding the complete process, from model to deployment. The package includes validation and certification support, as well as hardware and software components and basic software building blocks.

DECOS test-bench
For example, the generic test-bench guides engineers through the verification and validation process, and supports a modular verification process.

“It provides a framework, with some new specific tools and the integration of existing external tools and safety standards,” says Schoitsch.

To validate the approach, DECOS applied their results to three vital application fields for embedded systems: automotive, avionics and industrial control.

These application demonstrators come with domain-specific tests and established the applicability of the DECOS middleware and tools.

DECOS’ architecture for automotive systems work with such functions as adaptive lighting and door positioning. For industrial control, the DECOS architecture helped to suppress critical vibrations when nano-imprinting.

Within the aerospace domain, the DECOS team developed a demonstrator for a shift in airplane flap control. Flaps give an aircraft its lift at lower speeds. DECOS shifted the current state of the art – a mechanic synchronisation control – to all-electronic synchronisation.

“It’s a long-term proposition, but we demonstrated that it was feasible,” says Schoitsch.

Safety-critical avionics systems are a critical way to demonstrate the capabilities of the DECOS tools. But the project’s results can be used anywhere, from trains to medical systems, mechatronics or robotics.

TTTech, one of the partners, developed and will now commercialise a time-triggered Ethernet system. The tool-bench has led to the development of another new product, which was integrated into the Certified Software Factory developed by Esterel Technologies.

DECOS also led to a spin-off by the Budapest University of Technology and Economics. Several spin-off and follow-up projects, such as MOGENTES, again run by ARC, are planned.

Leading lights
The project took 42 months to complete, was funded with €15m and involved 18 of Europe’s leading companies. Global players such as Infineon, Airbus, Thales, EADS, Liebherr Aerospace, Audi, Fiat, and Hella were involved.

Ahmed ElAmin | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89689

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>