Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First transistor developed using nanotechnology

25.04.2008
Transistors are an indispensable building block in electric appliances, where they amplify weak electric currents. Now researchers have developed a new type of transistor that is 50 times more energy efficient than today’s models. It is also the first to be developed using nanotechnology. The new transistor is described in the latest issue of Electron Device Letters.

“This kind of transistor should be able to reduce energy consumption in mobile phones and computers, for example, so they wouldn’t have to be recharged so often. What’s more, it can pave the way for communicating in frequencies that are too high for today’s technology,” says Lars-Erik Wernersson, professor of solid state physics at the Faculty of Engineering, Lund University, in Sweden.

For some time researchers have been stymied by the fact that transistors can’t be reduced any further in size without overheating, since the electrons release so much energy.

“But our model is made up of indium arsenide, where the electrons move more easily compared with silicon, the conventional semiconductor material in transistors. Actually, it’s hard to produce transistors with indium arsenide, but if we apply nanotechnology, it’s rather simple,” explains Lars-Erik Wernersson.

The transistor is thus constructed using nanotechnology. According to Lars-Erik Wernersson, this means that the material is self-organized according to a bottom-up principle instead of being “carved out,” which is the conventional method.

Ultimately Lars-Erik Wernersson and his colleagues also hope to develop transistors that can communicate in entirely new frequency areas. Today’s electric appliances use 3–10 gigahertz. The hope is to reach 60 GHz, which is a considerably broader frequency range.

“With 60 GHz you can only communicate across short differences and not through walls, for instance. But this new frequency range can rationalize wireless communication in the home, for example when you download a film or communicate between TVs and projectors. We know for sure that such electric appliances will be integrated more and more in the future,” he adds.

There are other scientists in the world working with similar research­-at IBM in the U.S., for example­-but these Swedish researchers have made the most progress in this field.

Recently Lars-Erik Wernersson was informed he would receive SEK 24.5 million from the Swedish Foundation for Strategic Research to develop new wireless circuits using nanotechnology. The newly developed transistor technology will serve as the basis for the new circuits. The transistor has been partly developed in collaboration with the spin-off company QuNano.

Kristina Lindgärde | alfa
Further information:
http://www.vr.se
http://www.lth.se

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>