Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European light research opens door for optical storage and computing

25.04.2008
The goal of replacing electronics with optics for processing data in computers is coming closer through cutting edge European research into the mysterious properties of "fast and slow" light. The long term aim is to boost processing speeds and data storage densities by several orders of magnitude and take the information technology industry into a new era, combining greatly improved performance with dramatically lower energy consumption.

The phenomenon of "fast and slow" light arises from the dispersion of electromagnetic waves when they interact with, and travel through, a physical medium such as a crystal. This can have the effect of slowing down the light pulses, or on occasions appearing to cause local acceleration.

These speed variations have the potential for developing purely optical devices using just electromagnetic radiation, rather than electrical signals, to store and process information. In the more immediate future, these properties will be used to enhance existing hybrid communication systems combining electronic and photonic (light-based) devices. But first more fundamental research is needed, and the current state of play along with a roadmap for future projects was discussed at a recent workshop organised by the European Science Foundation (ESF).

The project achieved its main objectives of reviewing the state of the art, highlighting possible applications, and gathering a dispersed European community of scientists, according to the workshop's convenor Marco Santagiustina. "There were two remarkable highlights: slow and fast light research has immense potential in applications like microwave and millimeter wave photonics, and secondly such applications can be targeted by making progress in a selected set of technologies," said Santagiustina.

Light signals are already used for communication over fibre optic cables, but cannot yet be stored directly, or used for computation. This would require slowing down the light signals so that they can be buffered within a small area, and can be achieved by exploiting "fast and slow" light effects. Before the arrival of true photonic computing, there is the more immediate prospect of building optical interconnects for example in communication networks, which would reduce latency, the time taken for signals to travel from source to destination. Latency imposed by the communications network has become a significant problem in an age of globalisation where computers in different continents are cooperating in tasks that need to be executed very quickly in fractions of a second.

Another more immediate application of "fast and slow" light is likely to come from the ability in processing ultrawide band microwave signals, for radio communications, both for mobile telephony and wireless LANs. "Fast and slow" light can be harnessed to transmit radio frequencies directly over fibre, making it easier, cheaper, and more efficient to connect up base stations or wireless access points. "Radio over fiber is an existing application field destined to grow in the near future," said Santagiustina. "This field will also represent a significant step forward for the photonic/electronic convergence. In that area the time-delay/phase-shift provided by slow and fast light devices can yield unprecedented functions."

Some of these functions have not yet been conceived, but the fundamental point is that converging photonics with electronics reduces delays and increases the bandwidth available, cutting costs and boosting communications capacity.

Thomas Lau | alfa
Further information:
http://www.esf.org
http://www.esf.org/fileadmin/be_user/ew_docs/06-081_Programme.pdf

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>