Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European light research opens door for optical storage and computing

25.04.2008
The goal of replacing electronics with optics for processing data in computers is coming closer through cutting edge European research into the mysterious properties of "fast and slow" light. The long term aim is to boost processing speeds and data storage densities by several orders of magnitude and take the information technology industry into a new era, combining greatly improved performance with dramatically lower energy consumption.

The phenomenon of "fast and slow" light arises from the dispersion of electromagnetic waves when they interact with, and travel through, a physical medium such as a crystal. This can have the effect of slowing down the light pulses, or on occasions appearing to cause local acceleration.

These speed variations have the potential for developing purely optical devices using just electromagnetic radiation, rather than electrical signals, to store and process information. In the more immediate future, these properties will be used to enhance existing hybrid communication systems combining electronic and photonic (light-based) devices. But first more fundamental research is needed, and the current state of play along with a roadmap for future projects was discussed at a recent workshop organised by the European Science Foundation (ESF).

The project achieved its main objectives of reviewing the state of the art, highlighting possible applications, and gathering a dispersed European community of scientists, according to the workshop's convenor Marco Santagiustina. "There were two remarkable highlights: slow and fast light research has immense potential in applications like microwave and millimeter wave photonics, and secondly such applications can be targeted by making progress in a selected set of technologies," said Santagiustina.

Light signals are already used for communication over fibre optic cables, but cannot yet be stored directly, or used for computation. This would require slowing down the light signals so that they can be buffered within a small area, and can be achieved by exploiting "fast and slow" light effects. Before the arrival of true photonic computing, there is the more immediate prospect of building optical interconnects for example in communication networks, which would reduce latency, the time taken for signals to travel from source to destination. Latency imposed by the communications network has become a significant problem in an age of globalisation where computers in different continents are cooperating in tasks that need to be executed very quickly in fractions of a second.

Another more immediate application of "fast and slow" light is likely to come from the ability in processing ultrawide band microwave signals, for radio communications, both for mobile telephony and wireless LANs. "Fast and slow" light can be harnessed to transmit radio frequencies directly over fibre, making it easier, cheaper, and more efficient to connect up base stations or wireless access points. "Radio over fiber is an existing application field destined to grow in the near future," said Santagiustina. "This field will also represent a significant step forward for the photonic/electronic convergence. In that area the time-delay/phase-shift provided by slow and fast light devices can yield unprecedented functions."

Some of these functions have not yet been conceived, but the fundamental point is that converging photonics with electronics reduces delays and increases the bandwidth available, cutting costs and boosting communications capacity.

Thomas Lau | alfa
Further information:
http://www.esf.org
http://www.esf.org/fileadmin/be_user/ew_docs/06-081_Programme.pdf

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>