Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue marshals new approach to protect software

26.06.2002


Hackers who try to use or copy software illegally may soon find a sticky web waiting to trap them.



It’s not the World Wide Web. Instead, it’s a new approach under development at Purdue University designed to protect software. By placing a linked brigade of hundreds of tiny "guards" at different points within software code, computer scientists have made it far more difficult for hackers to use software without permission from the vendor.

"Merely cracking a single password won’t do it anymore," said Mikhail (Mike) Atallah, professor of computer science at Purdue. "We are distributing security measures throughout the software. It is no longer enough to hack past one point; the guards will notice what you’ve done and prevent you from using the program."


Atallah, who leads the research team that came up with this new approach, co-authored a paper on the results with Purdue graduate student Hoi Chang. Chang presented their ideas at the Association for Computing Machinery (ACM) workshop on Security and Privacy in Digital Rights Management, SPDRM 2001.

Atallah has since helped found the startup venture Arxan Technologies Inc. to develop the protection measures for market. The company hopes to have a finished product available by this fall.

"We are encouraged by our test results so far," Atallah said. "We have been able to add custom levels of security to software without significantly decreasing its speed or increasing the time it takes to download over the Internet."

Traditional software protection measures typically demand that a user enter a password supplied by the vendor at the time of purchase. But it has proven all too easy for hackers to get past a single security checkpoint, after which they can use a program for free and copy it as often as they wish.

"The old way is a lot like having a single guard at the bank," Atallah said. "Neutralize him, and the vault is yours."

The innovation of Atallah’s team lies in connecting the security measures with the software’s operation, making the two inextricable. This effectively multiplies the number of guards to dozens or hundreds, and makes it impossible for a hacker to neutralize one guard without the rest noticing.

"These measures will deter software piracy for a simple reason – it will become too much of a hassle for a hacker to find and disable all the guards," Atallah said. "And we have additional strategies to compound the effectiveness of our approach."

One such strategy involves adding 100 guards to a piece of software, but only having 10 of them actively on the job at a given moment; their membership changes constantly and in secret. Keeping most of the guards "sidelined" in this fashion is one way Atallah keeps programs functioning fast, even after the guards are added.

"Security measures like ours must be added to existing software," Atallah said. "Historically, this has meant two things in practice: The modified software takes up more memory in your computer, and it runs more slowly. Our approach sidesteps both of those problems by spreading the additional code out in tiny pieces throughout the software. So far, it has caused very little reduction in speed."

Arxan is currently testing the security measures on Windows systems in several corporate environments. The system can easily be modified for other operating systems, and the company plans to market versions for Mac and Linux systems as well. Arxan has licensed the technology from Purdue based on several patent applications.

The company is based in Purdue’s Research Park, which currently encompasses 619 acres about two miles north of Purdue University’s West Lafayette campus. Almost 150 acres have been developed with approximately 1 million square feet owned or leased by more than 100 companies. More than 40 of these companies are growing within the research park’s high-tech incubation complex, which is the largest university-affiliated business incubator in the country. Many of these ventures are developing Purdue-licensed technologies.

Initial funding for the research was provided by Purdue’s Center for Education and Research in Information Assurance and Security (CERIAS).

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Sources: Mike Atallah, (765) 494-6017, mja@cs.purdue.edu

Donna Jeker, (917) 415-0837, djeker@ix.netcom.com

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Chad Boutin | EurekAlert!

More articles from Information Technology:

nachricht Optical fiber transmits one terabit per second – Novel modulation approach
16.09.2016 | Technische Universität München

nachricht Researchers prototype system for reading closed books
09.09.2016 | Massachusetts Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>