Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulating surgery to reduce implant complications

24.04.2008
A computer simulation breakthrough could mean fewer medical complications and better surgical outcomes for patients undergoing hip, knee or spinal implant surgery.

Each year surgeons across Europe perform a staggering 900,000 hip, knee and spinal implant operations. Implant surgery is one of the most remarkable advances in medical science. Such operations restore increased mobility and a vastly improved quality of life to millions of Europeans.

Implant surgery also has one of the most remarkable success rates in medical practice, with reliable, predictable outcomes and very few complications. But it is not complication free.

“About 10 per cent of operations have complications, often requiring a new implant, or a further surgery,” explains Dr. Ing. Ruben Lafuente, technical manager of the Spanish IT consulting firm Adapting S.L. and co-ordinator of the OrthoSim project. “It means increased pain and inconvenience, a drain on human resources and of course it is expensive, too.”

Enter the EU-funded OrthoSim project. Set up to develop an orthopaedic surgery planning tool, OrthoSim has developed a platform that can significantly reduce the risk of post-op complications, as well as provide a means for testing new implant devices, the researchers claim. And in the very near future the platform will provide the base for a new surgical training tool.

Simulating the interface
The OrthoSim platform is a system using computer software to create anatomical and implant simulations. The simulation models are based on the work of two leading European biomechanics research centres.

“Our lumbar spinal region model is the result of over 20 years of research at the Laboratoire de Biomecanique of L’Ecole Nationale Superieure d’Arts et Metiers in Paris,” explains Lafuente. “It was enhanced and complemented by a lumbar implant model provided by the Instituto de Biomecánica de Valencia in Spain.”

These models were combined to provide a reliable simulation of the interface between the artificial implant and the living tissue, providing surgeons with vital pre-op information.

“With this service, a surgeon or implant engineer can effectively call on the expertise of the best people in any field of orthopaedic surgery, where biomechanical simulation can offer new insights for patient care,” Lafuente says.

Even better, the tool can be used to study the suitability of new implant devices and can help pinpoint any problems with the design at an early stage.

“Implant designers get the opportunity to test their new designs initially without the need for actual implantations,” notes Lafuente. “It will mean better implant designs at an early stage, cutting costs and research time, as well as improving outcomes early on.”

Solving the integration problem

The models are linked together and are hosted at an online service. Integrating the various models and algorithms into a unified platform was a difficult computer science problem to solve.

“We had to work very hard to get the protocols right and we spent a lot of time developing the user interface, too,” says Lafuente. “We wanted to make the service as simple to use as possible.”

The OrthoSim project ended in March last year, with the research team successfully combining the various elements of the project. Since then the partners have been developing the service offering further and are looking for financial support.

“Initially we had a model just for lumbar spine implants, but in the last months we have almost completed a validated model for hip implants,” says Lafuente. “We believe that once we finish perfecting a model for knee implants we will have a very strong set of tools to offer surgeons.”

But Lafuente warns that developing new products for the health market is a very difficult task in itself.

“The quality assurance and validation issues are very important in healthcare directed products, and will require more work,” he says.

That work continues. A follow-on project, called OrthoTraining, is taking the OrthoSim toolset a step further. Over the next two years OrthoTraining’s researchers plan to develop a surgical training tool based on OrthoSim’s work.

“It will enhance training for students and it will mean that newly qualified surgeons will have better training and an enhanced skill set,” Lafuente says. “This will improve the medical services and quality of life of European citizens.”

OrthoSim was funded under the EU's eTEN programme for market validation and implementation.

Ahmed ElAmin | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89681

More articles from Information Technology:

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

nachricht Researchers catch extreme waves with higher-resolution modeling
15.02.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>