Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer scientists develop solutions for long-term storage of digital data

23.04.2008
Although the digital age is well under way, one crucial detail remains to be worked out--how to store vast amounts of digital information in a way that allows future generations to recover it.

"The problem is how to build a large-scale data storage system to last 50 to 100 years," said Ethan Miller, associate professor of computer science in the Baskin School of Engineering at the University of California, Santa Cruz.

Tape libraries are widely used for data storage, but digital tape has many shortcomings as an archival medium. Miller's group has come up with a new approach, called Pergamum, which uses hard disk drives to provide energy-efficient, cost-effective storage. The declining cost of hard drives has made them more competitive with tape, and they offer numerous advantages for searching and retreiving data. "It's like the difference between a VCR and TiVo," Miller said.

Pergamum, named after the ancient Greek library that made the transition from fragile papyrus to more durable parchment, is a distributed network of intelligent, disk-based storage devices. The team that developed it includes UCSC graduate students Mark Storer and Kevin Greenan, along with researcher Kaladhar Voruganti of NetApp (formerly Network Appliance), a company that focuses on storage and data management solutions.

Archival storage is a big issue for businesses, partly due to legal requirements for the preservation of financial and business records, and also because data mining strategies can turn stored data into a valuable resource. Long-term storage is also a growing issue for individuals who are filling their personal computers with digital photos, movies, and documents.

"There is a risk that an entire generation's cultural history could be lost if people aren't able to retrieve that data," Storer said. "Everyone is switching to digital cameras, but we've never demonstrated that digital data can be reliably preserved for a long time."

Pergamum has attracted a lot of attention from industry since Storer presented it at a leading conference in the field, the USENIX Conference on File and Storage Technologies (FAST '08), held in San Jose in February. Robin Harris, an industry consultant who writes an influential blog called StorageMojo, called the Pergamum paper his "favorite FAST '08 paper" (see http://storagemojo.com/2008/03/14/storagemojos-favorite-fast-08-paper/).

The researchers designed the system to provide reliable, energy-efficient data storage using off-the-shelf components. It also has the ability to evolve over time as storage technologies change. "You want to avoid 'forklift upgrades,' where you have to get rid of the old system and transfer all your data to a whole new system," Miller said.

According to Storer, businesses are beginning to recognize that archival storage is very different from simply backing up their data. "A backup is a safety net--you hope you won't need it. Archival data you do want to use--it's a valuable resource and you want to be able to mine it for information," he said.

Tapes work well for backups, in which data are written once, rarely read, and not kept indefinitely. But archival data should be easy to read, query, browse, and search, and tape has inherent weaknesses in these areas. Existing disk-based systems offer excellent performance, but rely on power-hungry central controllers.

"Energy usage is a big issue, so a lot of our effort in designing Pergamum focused on dramatically reducing power use," Miller said.

Pergamum uses individual building blocks consisting of a hard drive; a small, low-power processor (like the chip in an iPhone); a flash memory card; and an ethernet port. These units, called "tomes," are connected using relatively inexpensive ethernet switches.

"Each tome is like a minicomputer, but with very low power demands," Miller said. "When not in use, it can shut down almost completely."

Even when active, the devices use very little power (less than 13 watts), which can be delivered over the network using Power over Ethernet technology. As a result, each unit is essentially a self-contained box with a network connection. The flash memory provides low-power, persistent storage so that many operations can be performed without activating the hard drive.

For reliability, Pergamum uses two levels of redundancy--within and between disks--to protect from both disk failures and errors in writing data to a disk (so-called "latent sector errors"). Tomes can be easily added to expand the system or to replace failed disks. And if hard disk drives become obsolete in 10 years, Pergamum won't suffer the same fate. The system doesn't care what the actual storage medium is, as long as the device can implement the simple protocol that will allow it to function as part of the network.

"In 50 years, the devices might use holographic storage," Storer said. "As long as you can wrap the new storage medium in this intelligent layer that speaks the protocol, it can participate in the network."

Pergamum is one of several related projects being developed by researchers in the Storage Systems Research Center (SSRC) at UCSC's Baskin School of Engineering. The center's other archival storage projects include Deep Store, which dramatically reduces the amount of space required to store data, and POTSHARDS, which provides long-term secure storage using "secret splitting" instead of traditional encryption. Both of these projects would be compatible with Pergamum, Miller said.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>