Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The next step in robot development is child’s play

21.04.2008
Teaching robots to understand enough about the real world to allow them act independently has proved to be much more difficult than first thought.

The team behind the iCub robot believes it, like children, will learn best from its own experiences.

The technologies developed on the iCub platform – such as grasping, locomotion, interaction, and even language-action association – are of great relevance to further advances in the field of industrial service robotics.

The EU-funded RobotCub project, which designed the iCub, will send one each to six European research labs. Each of the labs proposed winning projects to help train the robots to learn about their surroundings – just as a child would.

The six projects include one from Imperial College London that will explore how ‘mirror neurons’ found in the human brain can be translated into a digital application. ‘Mirror neurons’, discovered in the early 1990s, trigger memories of previous experiences when humans are trying to understand the physical actions of others. A separate team at UPF Barcelona will also work on iCub’s ‘cognitive architecture’.

At the same time, a team headquartered at UPMC in Paris will explore the dynamics needed to achieve full body control for iCub. Meanwhile, researchers at TUM Munich will work on the development of iCub’s manipulation skills. A project team from the University of Lyons will explore internal simulation techniques – something our brains do when planning actions or trying to understand the actions of others.

Over in Turkey, a team based at METU in Ankara will focus almost exclusively on language acquisition and the iCub’s ability to link objects with verbal utterances.

“The six winners had to show they could really use and maintain the robot, and secondly the project had to exploit the capabilities of the robot,” says Giorgio Metta. “Looking at the proposals from the winners, it was clear that if we gave them a robot we would get something in return.”

The iCub robots are about the size of three-year-old children, with highly dexterous hands and fully articulated heads and eyes. They have hearing and touch capabilities and are designed to be able to crawl on all fours and to sit up.

Humans develop their abilities to understand and interact with the world around them through their experiences. As small children, we learn by doing and we understand the actions of others by comparing their actions to our previous experience.

The developers of iCub want to develop their robots’ cognitive capabilities by mimicking that process. Researchers from the EU-funded Robotcub project designed the iCub’s hardware and software using a modular system. The design increases the efficiency of the robot, and also allows researcher to more easily update individual components. The modular design also allows large numbers of researchers to work independently on separate aspects of the robot.

iCub’s software coding, along with technical drawings, are free to anyone who wishes to download and use them.

“We really like the idea of being open as it is a way to build a community of many people working towards a common objective,” says Giorgio Metta, one of the developers of iCub. “We need a critical mass working on these types of problems. If you get 50 researchers, they can really layer knowledge and build a more complex system. Joining forces really makes economic sense for the European Commission that is funding these projects and it makes scientific sense.”

Built-in learning skills
While the iCub’s hardware and mechanical parts are not expected to change much over the next 18 months, researchers expect to develop the software further. To enable iCub to learn by doing, the Robotcub research team is trying to pre-fit it with certain innate skills.

These include the ability to track objects visually or by the sounds – with some element of prediction of where the tracked object will move to next. iCub should also be able to navigate based on landmarks and a sense of its own position.

But the first and key skill iCub needs for learning by doing is an ability to reach towards a fixed point. By October this year, the iCub developers plan to develop the robot so it is able to analyse the information it receives via its vision and feel ‘senses’. The robot will then be able to use this information to perform at least some crude grasping behaviour – reaching outwards and closing its fingers around an object.

“Grasping is the first step in developing cognition as it is required to learn how to use tools and to understand that if you interact with an object it has consequences,” says Giorgio Metta. “From there the robot can develop more complex behaviours as it learns that particular objects are best manipulated in certain ways.”

Once the assembly of the six robots for the research projects is completed, the developers plan to build more iCubs, creating between 15 and 20 in use around Europe.

Ahmed ElAmin | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89673

More articles from Information Technology:

nachricht Smarter robot vacuum cleaners for automated office cleaning
15.08.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Researchers 3-D print first truly microfluidic 'lab on a chipl devices
15.08.2017 | Brigham Young University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>