Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The next step in robot development is child’s play

21.04.2008
Teaching robots to understand enough about the real world to allow them act independently has proved to be much more difficult than first thought.

The team behind the iCub robot believes it, like children, will learn best from its own experiences.

The technologies developed on the iCub platform – such as grasping, locomotion, interaction, and even language-action association – are of great relevance to further advances in the field of industrial service robotics.

The EU-funded RobotCub project, which designed the iCub, will send one each to six European research labs. Each of the labs proposed winning projects to help train the robots to learn about their surroundings – just as a child would.

The six projects include one from Imperial College London that will explore how ‘mirror neurons’ found in the human brain can be translated into a digital application. ‘Mirror neurons’, discovered in the early 1990s, trigger memories of previous experiences when humans are trying to understand the physical actions of others. A separate team at UPF Barcelona will also work on iCub’s ‘cognitive architecture’.

At the same time, a team headquartered at UPMC in Paris will explore the dynamics needed to achieve full body control for iCub. Meanwhile, researchers at TUM Munich will work on the development of iCub’s manipulation skills. A project team from the University of Lyons will explore internal simulation techniques – something our brains do when planning actions or trying to understand the actions of others.

Over in Turkey, a team based at METU in Ankara will focus almost exclusively on language acquisition and the iCub’s ability to link objects with verbal utterances.

“The six winners had to show they could really use and maintain the robot, and secondly the project had to exploit the capabilities of the robot,” says Giorgio Metta. “Looking at the proposals from the winners, it was clear that if we gave them a robot we would get something in return.”

The iCub robots are about the size of three-year-old children, with highly dexterous hands and fully articulated heads and eyes. They have hearing and touch capabilities and are designed to be able to crawl on all fours and to sit up.

Humans develop their abilities to understand and interact with the world around them through their experiences. As small children, we learn by doing and we understand the actions of others by comparing their actions to our previous experience.

The developers of iCub want to develop their robots’ cognitive capabilities by mimicking that process. Researchers from the EU-funded Robotcub project designed the iCub’s hardware and software using a modular system. The design increases the efficiency of the robot, and also allows researcher to more easily update individual components. The modular design also allows large numbers of researchers to work independently on separate aspects of the robot.

iCub’s software coding, along with technical drawings, are free to anyone who wishes to download and use them.

“We really like the idea of being open as it is a way to build a community of many people working towards a common objective,” says Giorgio Metta, one of the developers of iCub. “We need a critical mass working on these types of problems. If you get 50 researchers, they can really layer knowledge and build a more complex system. Joining forces really makes economic sense for the European Commission that is funding these projects and it makes scientific sense.”

Built-in learning skills
While the iCub’s hardware and mechanical parts are not expected to change much over the next 18 months, researchers expect to develop the software further. To enable iCub to learn by doing, the Robotcub research team is trying to pre-fit it with certain innate skills.

These include the ability to track objects visually or by the sounds – with some element of prediction of where the tracked object will move to next. iCub should also be able to navigate based on landmarks and a sense of its own position.

But the first and key skill iCub needs for learning by doing is an ability to reach towards a fixed point. By October this year, the iCub developers plan to develop the robot so it is able to analyse the information it receives via its vision and feel ‘senses’. The robot will then be able to use this information to perform at least some crude grasping behaviour – reaching outwards and closing its fingers around an object.

“Grasping is the first step in developing cognition as it is required to learn how to use tools and to understand that if you interact with an object it has consequences,” says Giorgio Metta. “From there the robot can develop more complex behaviours as it learns that particular objects are best manipulated in certain ways.”

Once the assembly of the six robots for the research projects is completed, the developers plan to build more iCubs, creating between 15 and 20 in use around Europe.

Ahmed ElAmin | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89673

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Asian tiger mosquito on the move

22.05.2018 | Life Sciences

Self-illuminating pixels for a new display generation

22.05.2018 | Trade Fair News

Embryonic development: How do limbs develop from cells?

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>