Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ad hoc encyclopaedia for the information age

16.04.2008
Linking communities and information into a virtual digital library is the 21st century version of the Dictionaire Raisonneé. Better, they can be organised around specific topics, creating vast repositories and networks of experts around a single problem. Best of all, it can be done on demand.

In 1750, Denis Diderot convinced his publisher to support a vast enterprise, the publication of the Encyclopédie gathering all knowledge into one location.

Dozens of writers worked on thousands of articles for more than 15 years to produce the first summary of all human knowledge and, despite the labour and pains of its birth, its entire contents would barely fill one volume of a contemporary encyclopaedia.

Times have changed. And they keep on changing. The pace of discovery in the modern world is such that it is difficult for specialists to stay abreast of their own field let alone be aware of the knowledge in all other fields that may impact on their specialty.

The internet, though useful, makes us aware of our ignorance. It does not reliably fill the gap with relevant and timely information. As an information society, it is becoming increasingly difficult to see the trees for the wood.

“There’s a trend in digital libraries now towards combining heterogeneous data from a wide variety of sources. This includes textual, multimedia objects and, increasingly, sensor and experimental data, or raw data that needs to be processed,” explains Donatella Castelli, scientific coordinator of the Diligent project.

Raw data allows virtual digital library (VDL) users to formulate questions that may not have been considered before. But this quantity of data poses huge processing challenges requiring digital libraries to have enormous resources, resources that are not readily available for many institutions.

The virtual digital library
But not, perhaps, for too much longer. Diligent sought to create a test bed to prove the viability of VDL infrastructure on grid-enabled technology. It would behave a little like a wiki, a Hawaiian word that means quick. Like Wikipedia – the world’s most famous wiki – a VDL on grids could allow the creation of vast online data repositories from distributed computing sources.

But unlike wikis, Diligent created a system that combines digital libraries with grid computing to provide storage, content retrieval and access services and, most impressively, shared data processing capabilities.

Grids link many computers together to provide a framework for shared processing and storage capabilities. So a grid can take a big, processing-intense problem, like weather prediction, and split the problem between a handful, dozens or even thousands of computers. Each only handles a tiny bit or the problem, but combined they provide a huge amount of raw power.

The power of grids is well established, and all that raw data crunching gives physicists and molecular biologists goose bumps. It is the power behind the SETI@home project, which uses volunteers’ computers to analyse cosmic signals in the search for extraterrestrial life.

But grids have never been used for virtual digital libraries, a library that exists only by the combination of data across cyberspace. It is an exciting new use of the technology. But it is not a trivial problem.

“It was very, very difficult,” reveals Castelli. “There was a lot of new technology to learn [and] many of the tools we needed were only being defined as we worked on the project.”

A better mousetrap
It is like inventing a better mousetrap, but the tools to do the job are only being developed as you hop impatiently from foot-to-foot, waiting for them. Then the tools get changed and you need to go back and reinvent your mousetrap.

But the hard work paid off. Diligent created an infrastructure – a system called g-Cube – and two VDLs to validate how it all works; one among the ‘Earth Observation’ community, the other in the Cultural Heritage community. It was a resounding success, and now these research communities have VDLs on grids serving their own needs. These are very impressive results and strain the definition of test bed as Diligent literally pushed the available technology to the limit and still came up with a working infrastructure.

They even developed advanced interface tools to set up a VDL. “We have a wizard to set up VDLs and it is very easy to use,” notes Castelli.

Nonetheless, work remains to be done. “The system needs to be optimised to improve its quality of service. We need to develop a production infrastructure and deal with issues like real infrastructure policies. We’ve started a new project called D4Science, and we’ll be working with the Earth Observation and the Fishery and Aquaculture Resource Management Research communities”, says Castelli.

Diderot’s pride
Diligent has many fine achievements and prompted the interests of a wide range of groups that could usefully share resources. But the real power of the project is the enormous opportunities for fruitful collaboration that their tools will enable in the future.

Scientists, engineers, policy-makers, NGOs and other experts or stakeholders will be able to come together on an ad hoc basis to brainstorm and share relevant data around specific problems, such as disaster relief, fuel efficiency, or even apparently routine tasks like organising a conference.

Diderot, the patron of vast collaborations around a great, hugely ambitious goal, would be proud.

Ahmed ElAmin | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89660

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>