Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Linköping University researchers break "unbreakable" crypto

15.04.2008
Quantum cryptography has been regarded as 100-percent protection against attacks on sensitive data traffic. But now a research team at Linköping University in Sweden has found a hole in this advanced technology.

The risk of illegal accessing of information, for example in money transactions, is necessitating more and more advanced cryptographic techniques.

When you send an encrypted message via the computer network, one of the most difficult problems to solve is how the key should be transmitted. One way is to send it by courier (either by regular mail or, as in spy movies, a person with a briefcase attached to his wrist). Another way is a "public key," which is used for online banking and security functions in Web browsers (https://).

A courier must of course be reliable, otherwise there is a risk that the key will be secretly copied on the way. A public key is regarded as secure, since enormous calculations are required to break the long strings of data bits - some 2,000 - that make up the key.

But a new technology called quantum cryptography is supposed to be absolutely secure. Thus far, however, very few people have made use of it. It requires special hardware, for example with a type of laser that emits polarized light particles (photons) via optic fiber or through the air. Some companies and banks in Austria are testing the system, and trials are underway with satellite-TV transmission.

The security is guaranteed by the laws of quantum mechanics.
Quantum-mechanical objects have the peculiar property that they cannot be measured upon or manipulated without being disturbed. If somebody tries to copy a quantum-cryptographic key in transit, this will be noticeable as extra noise. An eavesdropper can cause problems, but not extract usable information.

But Jan-Åke Larsson, associate professor of applied mathematics at Linköping University, working with his student Jörgen Cederlöf, has shown that not even quantum cryptography is 100-percent secure. There is a theoretical possibility that an unauthorized person can extract the key without being discovered, by simultaneously manipulating both the quantum-mechanical and the regular communication needed in quantum cryptography.

"The concern involves authentication, intended to secure that the message arriving is the same as the one that was sent. We have scrutinized the system as a whole and found that authentication does not work as intended. The security of the current technology is not sufficient," says Jan-Åke Larsson.

In the article, published in the prestigious journal IEEE Transactions on Information Theory, the authors propose a change that solves the problem.

"We weren't expecting to find a problem in quantum cryptography, of course, but it is a really complicated system. With our alteration, quantum cryptography will be a secure technology," says Jan-Åke Larsson.

Contact: Jan-Åke Larsson, phone: +46 (0)13-281468; e-mail: jalar@mai.liu.se

Åke Hjelm, | idw
Further information:
http://www.vr.se
http://expertsvar.se

More articles from Information Technology:

nachricht Efficient time synchronization of sensor networks by means of time series analysis
24.01.2017 | Alpen-Adria-Universität Klagenfurt

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>