Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research could accelerate computing to speed of light


Researchers at the University of Toronto have discovered a new technique to form tiny perfect crystals that have high optical quality, a finding that could usher in a new era of ultra-fast computing and communication using photons instead of electrons.

These crystals, called photonic crystals, could greatly improve both speed and bandwidth in communications systems, says University Professor Geoffrey Ozin of the Department of Chemistry.

"All of the promises of what photonic crystals can do, in terms of guiding light and bending light in incredibly small spaces, may be achieved by the assembly of patterns of micrometer-size photonic crystals all in a plane," he says. "The breakthrough possibly represents a step towards the development of miniaturized optical components earmarked for the next generation of all-optical computers and telecommunication systems."

The technique, described in the June issue of Advanced Functional Materials, carves geometrically and spatially well-defined microscopic patterns into the surface of a material. The surface relief patterns are then exposed to an alcohol-based solution of synthetic microspheres. These microspheres exclusively enter the surface relief patterns and self-assemble into perfectly arranged microstructures called photonic crystals. The crystals have the property of being able to act as tiny optical components for managing photons in circuits of light similar to how semi-conductor transistors control electrons in circuits of electricity.

Ozin, who holds the Canada Research Chair in Materials Chemistry, says the findings represent a step towards significantly reducing the size of optical components, devices and circuits.

CONTACT: Professor Geoffrey Ozin, Department of Chemistry, 416-978-2082, or Nicolle Wahl, U of T public affairs, 416-978-6974,

Nicolle Wahl | EurekAlert!

More articles from Information Technology:

nachricht Green Light for Galaxy Europe
15.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Tokyo Tech's six-legged robots get closer to nature
12.03.2018 | Tokyo Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>