Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One virtual step for man, one real leap for mankind

14.04.2008
Imagine being able to take a step back in time and walk through the streets of ancient Pompeii hours before the eruption of Vesuvius.

In April 2008, European researchers will demonstrate that walking through virtual environments is set to be a reality.

“In the virtual environment you have flight simulators, car simulators, but the most natural way of locomotion for humans is walking and this was practically impossible,” says Marc Ernst, the coordinator of the CyberWalk project at the Max Planck Institute for Biological Cybernetics.

To make virtual walking a reality, the CyberWalk researchers had to address five key issues: providing a surface to walk on, controlling the surface in a way that minimised forces on the user, developing a non-intrusive tracking system, displaying a high-quality visualisation, and ensuring a natural human perception of the virtual environment.

This month, at a special workshop in Tuebingen, Germany, the EU-funded researchers will demonstrate their treadmill allowing unconstrained walking in all directions (omni-directional) through large-scale virtual environments.

“Walking through a virtual city was impossible before,” Ernst says. “We are the first to demonstrate that you can walk through a virtual city or any type of extended environment.”

Be natural
Several attempts have been made to develop omni-directional treadmills, with Japanese researchers producing prototypes, and a group in the USA developing a smaller treadmill for military use. Neither allow for truly natural walking and immersion in a virtual environment.

“A key feature is that you need a relatively large treadmill to simulate natural walking,” explains Ernst. “The one that will be demonstrated is 6m by 6m, with an active walking area of 4.5m by 4.5m.”

According to Ernst, this is the minimum size necessary for 'natural walking'.

The treadmill, or CyberCarpet, incorporates several new mechanical solutions, which ensure smooth and safe operation. The key to the CyberCarpet is a platform with a big chain drive. The chain elements are made of conventional treadmills.

The chain moves in one direction whereas the movement direction of the belts is orthogonal to that. Summing the two directions of the chain and the belts provides the omni-directional actuation principle and so the treadmill motion opposing the motion of the walker can be in any direction.

“Theoretically there is no limit to the size of treadmill. In fact, the bigger the better,” says Ernst. “But practicalities dictate that the size of the CyberCarpet is limited to the size of the room, the mechanical constraints of the construction and the money you have to spend.”

To track the walker, CyberCarpet wanted to dispense with the Hollywood-style suits covered in reflective marker balls. Its unique system uses cameras to track the position and posture of the individual. This helps control the velocity of the treadmill and interactions with the virtual environment.

Visualising the virtual environment is achieved courtesy of a commercial head-mounted display, which does have markers on it, says Ernst, because you “simply need a fast and accurate system”.

Real-life applications for virtual reality
The possibility of walking through large virtual environments has already received a lot of attention and captured the public’s attention. One project partner, the Swiss Federal Institute of Technology (ETHZ) developed the CityEngine, developed a software package for quickly creating large-scale virtual environments in particular cities, in various degrees of detail.

Combining the CityEngine with CyberWalk will allow people to go beyond strolling through the streets of ancient Pompeii and Rome. Architects, for example, could transport customers into the future, and allow them to walk through buildings even before they have been built.

ETHZ is considering exploiting CityEngine as a tool for the gaming industry. Talks with some game production houses are already underway.

Beyond the obvious use in entertainment, the achievements of the CyberWalk project could extend to training for firemen in dangerous scenarios, while keeping them well out of harm’s way. It could also help with medical rehabilitation for people after a stroke, people with Parkinson’s disease, or to help them overcome phobias.

The developments have also created exciting new academic possibilities for research into behavioural science and the biomechanics of human locomotion.

But the showcase demonstration is pure escapism, bringing Pompeii to life again after nearly two millennia.

Ahmed ElAmin | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89667

More articles from Information Technology:

nachricht New technology enables 5-D imaging in live animals, humans
16.01.2017 | University of Southern California

nachricht Fraunhofer FIT announces CloudTeams collaborative software development platform – join it for free
10.01.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>