Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology for Small Form Factor Optical Storage

20.06.2002


Philips has demonstrated the world’s first fully functional miniature optical disc drive using blue laser technology. Up to 1 Gbyte of data can be stored on a single-sided optical disc of just 3 cm in diameter, matching the size constraints of portable devices such as digital cameras, mobile phones, PDAs and portable Internet devices. This prototype illustrates Philips’ leadership in optical storage technology, which is driven by superb media robustness and the low cost per Mbyte of the storage medium, making it optimally suited for large-scale distribution of pre-recorded content.

Drastic size reduction


Recent advances in blue laser technology, and Philips innovations in the area of optical storage media and miniaturised opto-mechanics are the ideal ingredients for small form factor optical drives. The resulting high storage density can be exploited to reduce the disc size while still providing a high storage capacity (e.g. 1 Gbyte on a disc of 3 cm diameter, i.e. more than on a present CD ROM). To fulfil the stringent space requirements of portable devices, all dimensions need to be reduced, particularly the building-height. This issue is addressed by the drastically miniaturized optical system now demonstrated by Philips.

From glass to plastic

The main factor determining the building height of optical disc drives is the optical objective lens system. Through the development of the world’s smallest objective lens for blue laser recording, the height of the optical disc drive was reduced to 7.5 mm, from the 12.5 mm or more typical in current drives. The lens was made of plastic, instead of glass, allowing greater design freedom and hence a smaller drive height. Another step was the development of an ultra-thin version of the actuator that positions and focuses the laser beam onto the optical disc.

Using these miniature key components, a first fully functional prototype optical drive of just 5.6 x 3.4 x 0.75 cm3 was realized. Further research is underway to achieve an even higher level of miniaturization. The demonstrator set-up, with the driving electronics currently still on a separate board, successfully played back MP3 data from a 3 cm diameter optical disc.

: Koen Joosse | newscenter
Further information:
http://www.research.philips.com

More articles from Information Technology:

nachricht New epidemic management system combats monkeypox outbreak in Nigeria
15.12.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>