Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery could lead to faster, smaller, cheaper computer chips

20.06.2002


In a discovery that could greatly reduce the size and cost of computer chips, Princeton researchers have found a fast method for printing ultrasmall patterns in silicon wafers.



The method, described in the June 20 issue of Nature, could allow electronics manufacturers to increase the density of transistors on silicon chips by 100-fold while dramatically streamlining the production process. Packing more transistors onto chips is the key to making more powerful computer processors and memory chips.

Researchers in the lab of electrical engineer Stephen Chou used the new technique to make patterns with features measuring 10 nanometers -- 10 millionths of millimeter. The method involves pressing a mold against a piece of silicon and applying a laser pulse for just 20 billionths of a second. The surface of the silicon briefly melts and resolidifies around the mold.


The method eliminates the costly and time-consuming step of etching, or photolithography, which had been the only way to make such small patterns in silicon. While the etching process takes 10 or 20 minutes to make a single chip, Chou’s imprint method accomplishes it in a quarter of a millionth of a second.

"Here you do not need to use all those steps," said Chou. "You just imprint the pattern directly into the silicon. You not only reduce the number of steps, you can do it in nanoseconds."

Chou’s co-authors on the paper are graduate students Chris Keimel and Jian Gu.

In a commentary accompanying the research report in Nature, electrical engineer Fabian Pease of Stanford University wrote that the new method could allow electronics manufacturers to continue the rapid pace of miniaturization that has continued for three decades, but appeared to be running up against fundamental physical limits.

Chou has made a career of breaking what had appeared to be physical limits of miniaturization. In 1996, he developed a method for imprinting nanometer-scale patterns into plastic polymers. That breakthrough greatly simplified the process of making molds, but costly etching was still required to transfer these patterns into silicon.

Chou believed that imprinting would work directly in silicon and could be made to happen much faster.

"People’s intuition is that mechanical processes are very slow, so imprinting cannot be fast," said Chou. "But I knew there is no scientific proof of that. So how do you design an experiment to explore the speed limit of the imprint process?"

The key turned out to be a tool called an excimer laser, which is commonly used in laser surgeries because it can heat just the thinnest surface layer of a material without causing damage underneath. Using conventional etching, Chou made a template of the pattern he wanted out of quartz, which is transparent to the laser beam, and pressed it against the silicon. A brief laser pulse melted the silicon surface around the mold. The silicon does not stick to the quartz.

Revealed by electron microscopes, the patterns the researchers produced look like long, squared-off channels. Each ridge measures 140 nanometers across and is topped by a much smaller ridge just 10 nanometers wide. By comparison, a 10-nanometer ribbon next to a human hair would look like the lead of a mechanical pencil next to a train car.

Chou dubbed the method Laser-Assisted Direct Imprint, or LADI. The University has submitted an invention disclosure, which initiates the process of filing for a patent. He believes the LADI process will mesh well with another of his earlier breakthroughs, his creation in 1996 of the world’s smallest transistor, which requires only a single electron of current. Making common use of such small transistor has been inhibited by lack of a convenient manufacturing process, he said.

Another benefit of LADI, said Chou, is that it eliminates the chemicals used in conventional lithography and is thus more environmentally friendly.

In addition to its commercial applications, the discovery opens an interesting avenue of scientific research, said Chou. Understanding the physics behind melting and solidifying on such small scales will require input from many fields, including materials science, mechanics and microfluidics.

"Scientifically, people are still trying to understand how it works, because it is amazing that it works at all," said Chou.

Steven Schultz | EurekAlert!

More articles from Information Technology:

nachricht The Flexible Grid Involves its Users
27.09.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Optical fiber transmits one terabit per second – Novel modulation approach
16.09.2016 | Technische Universität München

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>