Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery could lead to faster, smaller, cheaper computer chips

20.06.2002


In a discovery that could greatly reduce the size and cost of computer chips, Princeton researchers have found a fast method for printing ultrasmall patterns in silicon wafers.



The method, described in the June 20 issue of Nature, could allow electronics manufacturers to increase the density of transistors on silicon chips by 100-fold while dramatically streamlining the production process. Packing more transistors onto chips is the key to making more powerful computer processors and memory chips.

Researchers in the lab of electrical engineer Stephen Chou used the new technique to make patterns with features measuring 10 nanometers -- 10 millionths of millimeter. The method involves pressing a mold against a piece of silicon and applying a laser pulse for just 20 billionths of a second. The surface of the silicon briefly melts and resolidifies around the mold.


The method eliminates the costly and time-consuming step of etching, or photolithography, which had been the only way to make such small patterns in silicon. While the etching process takes 10 or 20 minutes to make a single chip, Chou’s imprint method accomplishes it in a quarter of a millionth of a second.

"Here you do not need to use all those steps," said Chou. "You just imprint the pattern directly into the silicon. You not only reduce the number of steps, you can do it in nanoseconds."

Chou’s co-authors on the paper are graduate students Chris Keimel and Jian Gu.

In a commentary accompanying the research report in Nature, electrical engineer Fabian Pease of Stanford University wrote that the new method could allow electronics manufacturers to continue the rapid pace of miniaturization that has continued for three decades, but appeared to be running up against fundamental physical limits.

Chou has made a career of breaking what had appeared to be physical limits of miniaturization. In 1996, he developed a method for imprinting nanometer-scale patterns into plastic polymers. That breakthrough greatly simplified the process of making molds, but costly etching was still required to transfer these patterns into silicon.

Chou believed that imprinting would work directly in silicon and could be made to happen much faster.

"People’s intuition is that mechanical processes are very slow, so imprinting cannot be fast," said Chou. "But I knew there is no scientific proof of that. So how do you design an experiment to explore the speed limit of the imprint process?"

The key turned out to be a tool called an excimer laser, which is commonly used in laser surgeries because it can heat just the thinnest surface layer of a material without causing damage underneath. Using conventional etching, Chou made a template of the pattern he wanted out of quartz, which is transparent to the laser beam, and pressed it against the silicon. A brief laser pulse melted the silicon surface around the mold. The silicon does not stick to the quartz.

Revealed by electron microscopes, the patterns the researchers produced look like long, squared-off channels. Each ridge measures 140 nanometers across and is topped by a much smaller ridge just 10 nanometers wide. By comparison, a 10-nanometer ribbon next to a human hair would look like the lead of a mechanical pencil next to a train car.

Chou dubbed the method Laser-Assisted Direct Imprint, or LADI. The University has submitted an invention disclosure, which initiates the process of filing for a patent. He believes the LADI process will mesh well with another of his earlier breakthroughs, his creation in 1996 of the world’s smallest transistor, which requires only a single electron of current. Making common use of such small transistor has been inhibited by lack of a convenient manufacturing process, he said.

Another benefit of LADI, said Chou, is that it eliminates the chemicals used in conventional lithography and is thus more environmentally friendly.

In addition to its commercial applications, the discovery opens an interesting avenue of scientific research, said Chou. Understanding the physics behind melting and solidifying on such small scales will require input from many fields, including materials science, mechanics and microfluidics.

"Scientifically, people are still trying to understand how it works, because it is amazing that it works at all," said Chou.

Steven Schultz | EurekAlert!

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>