Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST shows on-card fingerprint match is secure, speedy

04.04.2008
A fingerprint identification technology for use in Personal Identification Verification (PIV) cards that offers improved protection from identity theft meets the standardized accuracy criteria for federal identification cards according to researchers at the National Institute of Standards and Technology (NIST).

Under Homeland Security Presidential Directive 12 (HSPD 12), by this fall most federal employees and contractors will be using federally approved PIV cards to “authenticate” their identity when seeking entrance to federal facilities. In 2006 NIST published a standard* for the new credentials that specifies that the cards store a digital representation of key features or “minutiae” of the bearer’s fingerprints for biometric identification.

Under the current standard, a user seeking to enter a biometrically controlled access point would insert his or her PIV smart card into a slot—just like using an ATM card—and place their fingers on a fingerprint scanner. Authentication proceeds in two steps: the cardholder enters a personal identification number to allow the fingerprint minutiae to be read from the card, and the card reader matches the stored minutiae against the newly scanned image of the cardholder’s fingerprints.

In recent tests,** NIST researchers assessed the accuracy and security of two variations on this model that, if accepted for government use, would offered improved features. The first allows the biometric data on the card to travel across a secure wireless interface to eliminate the need to insert the card into a reader. The second uses an alternative authentication technique called “match-on-card” in which biometric data from the fingerprint scanner is sent to the PIV smart card for matching by a processor chip embedded in the card. The stored minutiae data never leave the card. The advantage of this, as computer scientist Patrick Grother explains, is that “if your card is lost and then found in the street, your fingerprint template cannot be copied.”

The NIST tests addressed two outstanding questions associated with match-on-cards. The first was whether the smart cards’ electronic “keys” can keep the wireless data transmissions between the fingerprint reader and the cards secure and execute the match operation all within a time budget of 2.5 seconds. The second question was whether the “match-on-card” operation will produce as few false acceptance and false rejection decisions as traditional match-off-card schemes where more computational power is available.

The researchers found that 10 cards with a standard 128-byte-long key and seven cards that use a more secure 256-byte key passed the security and timing test using wireless. On the accuracy side, one team met the criteria set by NIST and two others missed narrowly. The computer scientists plan a new round of tests soon to allow wider participation. For copies of the test report and details of the next test round, see the MINEX (Minutiae Interoperability Exchange Test) Phase II Web pages.

Evelyn Brown | EurekAlert!
Further information:
http://www.nist.gov

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>