Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers perform multi-century high-resolution climate simulations

Using state-of-the-art supercomputers, Lawrence Livermore National Laboratory climate scientists have performed a 400-year high-resolution global ocean-atmosphere simulation with results that are more similar to actual observations of surface winds and sea surface temperatures.

The research, led by LLNL atmospheric scientist Govindasamy Bala, appears in the April 1 edition of the Journal of Climate.

The researchers used the Community Climate System Model (CCSM), which is sponsored by the National Science Foundation and Department of Energy. CCSM is a global ocean-atmosphere modeling framework designed to simulate the climate of the Earth. It is a comprehensive general circulation model that consists of complex submodels for the atmosphere, ocean, ice and land. In the earlier versions, spectral methods were available to solve the transport of water vapor, temperature and momentum in the atmosphere.

In the LLNL simulation, the researchers assessed the performance of a new dynamical method for atmospheric transport that was developed at NASA by Ricky Rood (a co-author of the study at the University of Michigan) and Shian-Jiann Lin of the National Oceanic and Atmospheric Administration. The new method is called finite volume transport.

The Livermore team found substantial improvements in the simulated global surface winds and sea surface temperatures. Team members also noted large improvements in the simulation of tropical variability in the Pacific, distribution of Arctic sea ice thickness and the ocean circulation in the Antarctic Circumpolar Current.

Climate scientists used LLNL's supercomputer, Thunder, to run high-resolution climate model simulations.

“We found that this coupled model is a state-of-the-art climate model with simulation capabilities in the class of those used for assessments for the Intergovernmental Panel on Climate Change (IPCC),” Bala said.

The simulation was performed on the LLNL supercomputer Thunder, using about 500 processors or slightly more than 10 percent of Thunder’s capacity. The 400-year-long simulation, performed over a period of three months, was part of an LLNL Grand Challenge Computing project. This simulation, at about 100-kilometer resolution for the atmosphere, is the highest resolution multi-century CCSM simulation to date.

Under the same Grand Challenge Computing project, the researchers earlier performed a 1,000-year-long simulation corresponding to the climate of pre-industrial times that enabled the scientists to estimate the “climate noise” in frost days, snow depth and stream flow in the Western United States. The collaborative study between LLNL and the Scripps Institution of Oceanography, which appeared in a Science article earlier this year, pinpointed the cause of that regional diminishing water flow to humans.

The present study is a collaborative effort between LLNL, the University of Michigan, Scripps Institution of Oceanography and NCAR. Other LLNL researchers include Art Mirin, Julie McClean, Dave Bader, Peter Gleckler and Krishna Achuta Rao (who is now at the Indian Institute of Technology Delhi).

Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne M. Stark | EurekAlert!
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>