Researchers perform multi-century high-resolution climate simulations

The research, led by LLNL atmospheric scientist Govindasamy Bala, appears in the April 1 edition of the Journal of Climate.

The researchers used the Community Climate System Model (CCSM), which is sponsored by the National Science Foundation and Department of Energy. CCSM is a global ocean-atmosphere modeling framework designed to simulate the climate of the Earth. It is a comprehensive general circulation model that consists of complex submodels for the atmosphere, ocean, ice and land. In the earlier versions, spectral methods were available to solve the transport of water vapor, temperature and momentum in the atmosphere.

In the LLNL simulation, the researchers assessed the performance of a new dynamical method for atmospheric transport that was developed at NASA by Ricky Rood (a co-author of the study at the University of Michigan) and Shian-Jiann Lin of the National Oceanic and Atmospheric Administration. The new method is called finite volume transport.

The Livermore team found substantial improvements in the simulated global surface winds and sea surface temperatures. Team members also noted large improvements in the simulation of tropical variability in the Pacific, distribution of Arctic sea ice thickness and the ocean circulation in the Antarctic Circumpolar Current.

Climate scientists used LLNL's supercomputer, Thunder, to run high-resolution climate model simulations.

“We found that this coupled model is a state-of-the-art climate model with simulation capabilities in the class of those used for assessments for the Intergovernmental Panel on Climate Change (IPCC),” Bala said.

The simulation was performed on the LLNL supercomputer Thunder, using about 500 processors or slightly more than 10 percent of Thunder’s capacity. The 400-year-long simulation, performed over a period of three months, was part of an LLNL Grand Challenge Computing project. This simulation, at about 100-kilometer resolution for the atmosphere, is the highest resolution multi-century CCSM simulation to date.

Under the same Grand Challenge Computing project, the researchers earlier performed a 1,000-year-long simulation corresponding to the climate of pre-industrial times that enabled the scientists to estimate the “climate noise” in frost days, snow depth and stream flow in the Western United States. The collaborative study between LLNL and the Scripps Institution of Oceanography, which appeared in a Science article earlier this year, pinpointed the cause of that regional diminishing water flow to humans.

The present study is a collaborative effort between LLNL, the University of Michigan, Scripps Institution of Oceanography and NCAR. Other LLNL researchers include Art Mirin, Julie McClean, Dave Bader, Peter Gleckler and Krishna Achuta Rao (who is now at the Indian Institute of Technology Delhi).

Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Media Contact

Anne M. Stark EurekAlert!

More Information:

http://www.llnl.gov

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors