Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SUNY researcher issued patent for virtual telemicroscope

31.03.2008
Telemicroscope system capable of E-mailing electronic slides

After nearly ten years of research and development, scientists at SUNY Downstate Medical Center in Brooklyn and Peking University in Beijing were awarded a United States patent for their virtual telemicroscope. This patented software permits off-site pathologists to diagnose cancer or other diseases in patients living in remote locations around the world.

Virginia M. Anderson, MD, associate professor of pathology at SUNY Downstate, and Jiang Gu, MD, PhD, dean and chairman of pathology at Peking University, developed the virtual microscope system, the only one of its kind capable of emailing electronic slides. Using their patent, the Chinese company Motic – a global leader in microscope manufacturing -- created a microscope with a robotic stage that scans whole slides at various magnifications and then creates compressed images that can be emailed all over the world.

In China, where the device is being tested as a diagnosis instrument, 600 hospitals do not have an on-site pathologist. The system was developed with that fact in mind.

“Enormous voids in pathology services exist. Virtual slides are definitely going to improve diagnostic accuracy and healthcare,” says Dr. Anderson.

The Motic telepathology system utilizes a computer and microscope, which enables interactive communication on a user network. A robot scans the whole tissue sample on the microscope. Subsequent images corresponding to the selected area of the specimen are linked at higher magnifications. The patented software turns an ordinary computer into a virtual microscope. High magnification images are compressed and linked to the low power scanned glass slide that is stored as a virtual slide file. Images can then be emailed and analyzed by pathologists at remote locations. Once received, Internet independent images can be stored and viewed as part of the electronic medical record or medical student teaching file.

“The virtual telemicroscope is designed the way pathologists think and work,” Dr. Anderson says, adding, “A pathologist would never scan an entire histopathologic section at high power. This is inefficient and unnecessary. Slides prepared by an experienced pathologist will focus on important areas to make a diagnosis.”

Clinical trials showed that Motic’s virtual telemicroscope is “as good as or better than the competition.” The system is also teaching-friendly, allowing professors to manipulate existing digital slides and create new slides for students to study.

The next generations of medical students and pathologists are being taught through interactive technology. The virtual telemicroscope will save time and money, improve medical education, and provide insight into the pathogenesis of disease. Microscopes will be used to prepare whole slide images for analysis on a big screen or laptop computer.

The SUNY Downstate system produces the only virtual slides that can be emailed around the world. Moreover, it is also the least expensive, Internet independent solution for expert consultation. Clinical trials published in the journal, Human Pathology (February 2008), confirm the diagnostic accuracy of virtual slides as compared to traditional methods.

Ron Najman | EurekAlert!
Further information:
http://www.downstate.edu

More articles from Information Technology:

nachricht Smart Computers
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>