Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SUNY researcher issued patent for virtual telemicroscope

31.03.2008
Telemicroscope system capable of E-mailing electronic slides

After nearly ten years of research and development, scientists at SUNY Downstate Medical Center in Brooklyn and Peking University in Beijing were awarded a United States patent for their virtual telemicroscope. This patented software permits off-site pathologists to diagnose cancer or other diseases in patients living in remote locations around the world.

Virginia M. Anderson, MD, associate professor of pathology at SUNY Downstate, and Jiang Gu, MD, PhD, dean and chairman of pathology at Peking University, developed the virtual microscope system, the only one of its kind capable of emailing electronic slides. Using their patent, the Chinese company Motic – a global leader in microscope manufacturing -- created a microscope with a robotic stage that scans whole slides at various magnifications and then creates compressed images that can be emailed all over the world.

In China, where the device is being tested as a diagnosis instrument, 600 hospitals do not have an on-site pathologist. The system was developed with that fact in mind.

“Enormous voids in pathology services exist. Virtual slides are definitely going to improve diagnostic accuracy and healthcare,” says Dr. Anderson.

The Motic telepathology system utilizes a computer and microscope, which enables interactive communication on a user network. A robot scans the whole tissue sample on the microscope. Subsequent images corresponding to the selected area of the specimen are linked at higher magnifications. The patented software turns an ordinary computer into a virtual microscope. High magnification images are compressed and linked to the low power scanned glass slide that is stored as a virtual slide file. Images can then be emailed and analyzed by pathologists at remote locations. Once received, Internet independent images can be stored and viewed as part of the electronic medical record or medical student teaching file.

“The virtual telemicroscope is designed the way pathologists think and work,” Dr. Anderson says, adding, “A pathologist would never scan an entire histopathologic section at high power. This is inefficient and unnecessary. Slides prepared by an experienced pathologist will focus on important areas to make a diagnosis.”

Clinical trials showed that Motic’s virtual telemicroscope is “as good as or better than the competition.” The system is also teaching-friendly, allowing professors to manipulate existing digital slides and create new slides for students to study.

The next generations of medical students and pathologists are being taught through interactive technology. The virtual telemicroscope will save time and money, improve medical education, and provide insight into the pathogenesis of disease. Microscopes will be used to prepare whole slide images for analysis on a big screen or laptop computer.

The SUNY Downstate system produces the only virtual slides that can be emailed around the world. Moreover, it is also the least expensive, Internet independent solution for expert consultation. Clinical trials published in the journal, Human Pathology (February 2008), confirm the diagnostic accuracy of virtual slides as compared to traditional methods.

Ron Najman | EurekAlert!
Further information:
http://www.downstate.edu

More articles from Information Technology:

nachricht New 3-D display takes the eye fatigue out of virtual reality
22.06.2017 | The Optical Society

nachricht Modeling the brain with 'Lego bricks'
19.06.2017 | University of Luxembourg

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>