Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart clothes: textiles that track your health

27.03.2008
Garments that can measure a wearer's body temperature or trace their heart activity are just entering the market, but the European project BIOTEX weaves new functions into smart textiles. Miniaturised biosensors in a textile patch can now analyse body fluids, even a tiny drop of sweat, and provide a much better assessment of someone's health.

It is 7 o’clock in the morning. You check yourself in the mirror, adjust your collar, and consider the hectic day ahead. But at least you know that the stress won't damage your health, for this is no ordinary set of clothes you are wearing.

Embedded within the fabric are numerous sensors, constantly monitoring your vital signs. If danger signs are detected, the garment is programmed to contact your doctor – and send a text message telling you to take it easy.

A cluster of EU research projects (SFIT Group) is supporting this burgeoning field of smart fabrics, interactive textiles and flexible wearable systems. Jean Luprano, a researcher at the Swiss Centre for Electronics and Microtechnology (CSEM), coordinates the BIOTEX project.

“One of the most obvious applications for smart fabrics is in the medical field,” he says. “There has been a good deal of progress with physiological measurements, body temperature or electro-cardiograms. But no-one has yet developed biochemical sensing techniques that can take measurements from fluids like sweat and blood. We are developing a suite of sensors that can be integrated into a textile patch. The patch is a sensing and processing unit, adaptable to target different body fluids and biochemical species. At the very least, some basic biochemical analyses could complement the physiological measurements that can already be monitored. In some circumstances, fluidic analysis may be the only way to get information on a patient's health status.”

Sensing success
But there is a simple reason why researchers have shied away from developing smart textiles for fluid monitoring: it is extremely tricky. How do you collect a fluid and transport it to a biosensing unit? Can you perform non-invasive blood tests? Can measurements be reliable and accurate with tiny volumes of liquid?

The BIOTEX partners – universities and small enterprises from Italy, France and Ireland – have collaborated with CSEM to overcome some of the technical barriers to biosensing textiles.

One of the main achievements of the project has been the development of a suite of prototype ionic biosensors, capable of measuring sodium, potassium and chloride in sweat samples. Another probe measures the conductivity of sweat and a miniaturised pH sensor uses colour changes to indicate the pH of sweat. An immunosensor, which could be integrated into wound dressings or bandages, can detect the presence of specific proteins in fluid samples.

These biosensors are not just scaled-down versions of existing technology, Luprano is keen to point out. “Many of the chemical or biochemical reactions used in sample assays are non-reversible and some part of the biosensor has to be replaced. When you monitor continuously you can't do that – you need a sensor that binds your substrate reversibly. Also, the BIOTEX sensors work on tiny volumes of liquid, so we had to come up with innovative designs and materials that would make it possible to miniaturise the sensors and make them compatible with fabrics.”

Several of the BIOTEX probes, including the pH sensor, use colour changes or other optical measurements. For example, as sweat passes through the pH sensor it causes an indicator to change colour which is detected by a portable spectrometer device. The immunosensor technology works in a similar fashion. Plastic optical fibres (POFs) are woven into the fabric so that light can be supplied to the optical sensors and the reflected light directed to the spectrometer.

Small and smart
The BIOTEX oxygen probe measures levels of oxygen saturation in the blood around the thorax using a technique called reflective oximetry. A cluster of POFs allows a large surface of the thorax to be illuminated and improves the collection of the reflected red and infrared light used for the oximeter sensor. Signal processing also improves the sensitivity of this method.

Having an array of biosensors in a textile patch is one thing, but how do you get fluids to them in the first place?

“The volume of fluid secreted from sweat glands is just a few millilitres over a small surface,” says Luprano, “and the body's heat means this is rapidly vaporised. We needed some kind of pump that could collect sweat in one area and bring it to the sensor array, where it could be channelled through each sensor.”

The solution uses a combination of hydrophilic (water-loving) and hydrophobic (water-repellent) yarns. It is possible to weave these two threads to direct the sweat through fabric channels to the sensor array. It is a passive system using no power, thereby reducing the power demands of the BIOTEX system (and the weight of a battery pack that the wearer would have to carry).

In the first BIOTEX trials, the smart patches will be worn in clothes by people with obesity and diabetes, as well as athletes. Once the technology has been validated, the plan is to take on industrial backers to commercialise it. Meanwhile, a large EU-funded project within the same SFIT group, called PROETEX, is integrating the technology with other micro- and nanosystems for specific applications (fire fighting and rescue teams).

However, whilst BIOTEX has solved several of the technical aspects of continuous biochemical monitoring, Luprano calls for more research into the application of this technology.

“It's new and healthcare providers are not used to it. We are not used to the information that continuous, remote monitoring can provide – so different to the one-off laboratory tests that are usually taken. BIOTEX makes this remote monitoring possible, but more research into the links between these indicators and disease conditions and states will make it realistic. Nevertheless, in the long-term we expect continuous monitoring, made possible with smart textiles, to make a major improvement to the way we approach the treatment of metabolic disorders and leisure.”

Ahmed ElAmin | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/id/89605

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>