Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Smart clothes: textiles that track your health

Garments that can measure a wearer's body temperature or trace their heart activity are just entering the market, but the European project BIOTEX weaves new functions into smart textiles. Miniaturised biosensors in a textile patch can now analyse body fluids, even a tiny drop of sweat, and provide a much better assessment of someone's health.

It is 7 o’clock in the morning. You check yourself in the mirror, adjust your collar, and consider the hectic day ahead. But at least you know that the stress won't damage your health, for this is no ordinary set of clothes you are wearing.

Embedded within the fabric are numerous sensors, constantly monitoring your vital signs. If danger signs are detected, the garment is programmed to contact your doctor – and send a text message telling you to take it easy.

A cluster of EU research projects (SFIT Group) is supporting this burgeoning field of smart fabrics, interactive textiles and flexible wearable systems. Jean Luprano, a researcher at the Swiss Centre for Electronics and Microtechnology (CSEM), coordinates the BIOTEX project.

“One of the most obvious applications for smart fabrics is in the medical field,” he says. “There has been a good deal of progress with physiological measurements, body temperature or electro-cardiograms. But no-one has yet developed biochemical sensing techniques that can take measurements from fluids like sweat and blood. We are developing a suite of sensors that can be integrated into a textile patch. The patch is a sensing and processing unit, adaptable to target different body fluids and biochemical species. At the very least, some basic biochemical analyses could complement the physiological measurements that can already be monitored. In some circumstances, fluidic analysis may be the only way to get information on a patient's health status.”

Sensing success
But there is a simple reason why researchers have shied away from developing smart textiles for fluid monitoring: it is extremely tricky. How do you collect a fluid and transport it to a biosensing unit? Can you perform non-invasive blood tests? Can measurements be reliable and accurate with tiny volumes of liquid?

The BIOTEX partners – universities and small enterprises from Italy, France and Ireland – have collaborated with CSEM to overcome some of the technical barriers to biosensing textiles.

One of the main achievements of the project has been the development of a suite of prototype ionic biosensors, capable of measuring sodium, potassium and chloride in sweat samples. Another probe measures the conductivity of sweat and a miniaturised pH sensor uses colour changes to indicate the pH of sweat. An immunosensor, which could be integrated into wound dressings or bandages, can detect the presence of specific proteins in fluid samples.

These biosensors are not just scaled-down versions of existing technology, Luprano is keen to point out. “Many of the chemical or biochemical reactions used in sample assays are non-reversible and some part of the biosensor has to be replaced. When you monitor continuously you can't do that – you need a sensor that binds your substrate reversibly. Also, the BIOTEX sensors work on tiny volumes of liquid, so we had to come up with innovative designs and materials that would make it possible to miniaturise the sensors and make them compatible with fabrics.”

Several of the BIOTEX probes, including the pH sensor, use colour changes or other optical measurements. For example, as sweat passes through the pH sensor it causes an indicator to change colour which is detected by a portable spectrometer device. The immunosensor technology works in a similar fashion. Plastic optical fibres (POFs) are woven into the fabric so that light can be supplied to the optical sensors and the reflected light directed to the spectrometer.

Small and smart
The BIOTEX oxygen probe measures levels of oxygen saturation in the blood around the thorax using a technique called reflective oximetry. A cluster of POFs allows a large surface of the thorax to be illuminated and improves the collection of the reflected red and infrared light used for the oximeter sensor. Signal processing also improves the sensitivity of this method.

Having an array of biosensors in a textile patch is one thing, but how do you get fluids to them in the first place?

“The volume of fluid secreted from sweat glands is just a few millilitres over a small surface,” says Luprano, “and the body's heat means this is rapidly vaporised. We needed some kind of pump that could collect sweat in one area and bring it to the sensor array, where it could be channelled through each sensor.”

The solution uses a combination of hydrophilic (water-loving) and hydrophobic (water-repellent) yarns. It is possible to weave these two threads to direct the sweat through fabric channels to the sensor array. It is a passive system using no power, thereby reducing the power demands of the BIOTEX system (and the weight of a battery pack that the wearer would have to carry).

In the first BIOTEX trials, the smart patches will be worn in clothes by people with obesity and diabetes, as well as athletes. Once the technology has been validated, the plan is to take on industrial backers to commercialise it. Meanwhile, a large EU-funded project within the same SFIT group, called PROETEX, is integrating the technology with other micro- and nanosystems for specific applications (fire fighting and rescue teams).

However, whilst BIOTEX has solved several of the technical aspects of continuous biochemical monitoring, Luprano calls for more research into the application of this technology.

“It's new and healthcare providers are not used to it. We are not used to the information that continuous, remote monitoring can provide – so different to the one-off laboratory tests that are usually taken. BIOTEX makes this remote monitoring possible, but more research into the links between these indicators and disease conditions and states will make it realistic. Nevertheless, in the long-term we expect continuous monitoring, made possible with smart textiles, to make a major improvement to the way we approach the treatment of metabolic disorders and leisure.”

Ahmed ElAmin | alfa
Further information:

More articles from Information Technology:

nachricht Next Generation Cryptography
20.03.2018 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation
19.03.2018 | Technische Informationsbibliothek (TIB)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>