Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create next-generation software to identify complex cyber network attacks

19.03.2008
Researchers in George Mason University’s Center for Secure Information Systems have developed new software that can reduce the impact of cyber attacks by identifying the possible vulnerability paths through an organization’s networks.

By their very nature networks are highly interdependent and each machine’s overall susceptibility to attack depends on the vulnerabilities of the other machines in the network. Attackers can take advantage of multiple vulnerabilities in unexpected ways, allowing them to incrementally penetrate a network and compromise critical systems. In order to protect an organization’s networks, it is necessary to understand not only individual system vulnerabilities, but also their interdependencies.

“Currently, network administrators must rely on labor-intensive processes for tracking network configurations and vulnerabilities, which requires a great deal of expertise and is error prone because of the complexity, volume and frequent changes in security data and network configurations,” says Sushil Jajodia, university professor and director of the Center for Secure Information Systems. “This new software is an automated tool that can analyze and visualize vulnerabilities and attack paths, encouraging ‘what-if analysis’.”

The software developed at Mason, CAULDRON, allows for the transformation of raw security data into roadmaps that allow users to proactively prepare for attacks, manage vulnerability risks and have real-time situational awareness. CAULDRON provides informed risk analysis, analyzes vulnerability dependencies and shows all possible attack paths into a network. In this way, it accounts for sophisticated attack strategies that may penetrate an organization’s layered defenses.

CAULDRON’s intelligent analysis engine reasons through attack dependencies, producing a map of all vulnerability paths that are then organized as an attack graph that conveys the impact of combined vulnerabilities on overall security. To manage attack graph complexity, CAULDRON includes hierarchical graph visualizations with high-level overviews and detail drilldown, allowing users to navigate into a selected part of the big picture to get more information.

“One example of this software in use is at the Federal Aviation Administration. They recently installed CAULDRON in their Cyber Security Incident Response Center and it is helping them prioritize security problems, reveal unseen attack paths and protect across large numbers of attack paths,” says Jajodia. “While currently being used by the FAA and defense community, the software is applicable in almost any industry or organization with a network and resources they want to keep protected, such as banking or education.”

Funding for this software development was provided by the defense, homeland security and intelligence communities, the FAA and Mason. Researchers in the Center for Secure Information Systems involved in the software development include Jajodia; Steven Noel, associate director; and Pramod Kalapa, senior research scientist.

About The Center for Secure Information Systems
Housed in the Volgenau School of Information Technology and Engineering, the Center for Secure Information Systems (CSIS) was established in 1990, as the first academic center in security at a U.S. university. One of the nation’s premier security research organizations, it is also a charter NSA Center of Academic Excellence in Information Assurance Education. CSIS maintains a dedicated full-time team of scientists and engineers with a wide range of expertise, including vulnerability analysis, network attack modeling, intrusion detection, penetration testing and related areas. The range and depth of experience of CSIS team members allows the center to understand and anticipate client requirements, and to formulate innovative solutions and build high-quality tools to meet those requirements.
About George Mason University
George Mason University, located in the heart of Northern Virginia’s technology corridor near Washington, D.C., is an innovative, entrepreneurial institution with national distinction in a range of academic fields. With strong undergraduate and graduate degree programs in engineering, information technology, biotechnology and health care, Mason prepares its students to succeed in the work force and meet the needs of the region and the world. Mason professors conduct groundbreaking research in areas such as cancer, climate change, information technology and the biosciences, and Mason’s Center for the Arts brings world-renowned artists, musicians and actors to its stage. Its School of Law is recognized by U.S. News & World Report as one of the top 35 law schools in the United States.

Jennifer Edgerly | EurekAlert!
Further information:
http://www.gmu.edu

More articles from Information Technology:

nachricht New epidemic management system combats monkeypox outbreak in Nigeria
15.12.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>