Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology improves odds for critically ill

17.03.2008
Large numbers of unnecessary deaths and avoidable medical complications in intensive care units (ICU) are attributable to the difficulties of treating high glucose levels in critically ill patients’ blood. That is about to change for the better thanks to a new automated insulin delivery system developed by European researchers.

A common side effect of stress and trauma in critically ill patients is a rapid increase in blood glucose levels. As with diabetes, the levels can be reduced and controlled by the infusion of insulin. But glucose levels peak and change much more quickly in the ICU environment and there is little room for trial and error. If the situation is not normalised, then complications and even deaths can and do occur.

Twice in the past, Europe-wide studies and trials were put in place to try and come up with a solution to the problem. But in both cases they were prematurely halted because researchers could not solve the problem of overcompensating and patients developing hypoglycaemia, or abnormally low blood sugar levels.

“What these studies did clearly indicate is that the establishment of normal glucose levels in critically ill patients is very difficult to achieve without some sort of automated system to help the nurses,” says Dr Martin Ellmerer, scientific coordinator of the CLINICIP project which has developed just such a system.

Nurses’ no-nonsense approach
CLINICIP started by surveying ICUs in a number of European hospitals and interviewing nursing staff. “We found out that ICU staff did not want to see additional catheters in patients, they did not want extra equipment taking up space, and costs had to be kept right down so as not to eat into funds for other vital equipment,” says Ellmerer. “So, right from the start the requirements were really tough.”

Partners in this EU-funded project, academic medical institutions plus one private-sector medical equipment manufacturer, decided they needed to develop a two-step approach. “We first developed a decision-support system which met all the criteria outlined by the ICU staff, and later developed a fully automated system,” he tells ICT Results.

At the heart of both systems is a sophisticated bit of computer software (an algorithm) written especially for this project.

With the decision-support system, nurses still have to draw blood from patients in the traditional way and test it for glucose levels. They enter the information via the user interface – a touch screen – the researchers have developed. The algorithm takes over at this stage, calculates how much insulin is needed and automatically administers it. It also alerts the nurse when a new blood sample needs to be taken and analysed – half an hour in the worst cases and up to four hours in less severe cases.

“We have fully functioning prototypes of the decision-support system which we successfully trialled in ICUs at different hospitals around Europe,” Ellmerer says. The project’s industrial partner, B. Braun Melsungen AG, is ready to go into commercial production of the system working together with the clinical partners.

“We will first have to go through an approval process and the systems should be commercially available to hospitals in mid-2009,” Ellmerer says. B. Braun is one of the leading manufacturers of infusion systems used in hospitals, and the CLINICIP technology will be incorporated into these as it was during the trials.

Developing the real deal
At the same time the prototype was being developed and tested, CLINICIP researchers were working on sensors for a fully automated, closed-loop control system to both monitor glucose levels and administer insulin with no involvement from a nurse.

The drawback of this is that a dedicated needle is necessary. “Unfortunately, this is unavoidable for a fully automated system,” Ellmerer points out. Using fibre-optic technology the needle draws blood, sends it for analysis and then returns it to the patient’s vein as well as administering the necessary dose of insulin.

“We have performed a proof-of-concept study to show we are able to establish glucose control in a clinical setting,” Ellmerer says.

To develop the sensor technology further and then commercialise it, a spin-off company will be set up with Ellmerer as CEO and one of the shareholders. The other shareholders are individuals from project partners in CLINICIP. The spin-off will work closely with B. Braun and the partners, although they are not stakeholders in it.

Ellmerer expects the fully automated two-step system to be commercially available in 2011.

“Our research and the products which result from it should have a pretty fundamental impact on ICUs,” he says. “They should improve survival chances, reduce complications, such as sepsis and organ failure, and reduce the time patients need to spend in ICUs.”

Ahmed ElAmin | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/id/89612

More articles from Information Technology:

nachricht Researchers 3-D print electronics and cells directly on skin
26.04.2018 | University of Minnesota

nachricht Cheap 3-D printer can produce self-folding materials
25.04.2018 | Carnegie Mellon University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>