Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virtual reality and computer technology improve stroke rehabilitation

11.03.2008
Israeli hospitals have recently started to use virtual reality therapy for stroke patients.

One commonly used program has the patient watch his virtual image on a screen. For example, tennis balls are virtually thrown at the patient from all directions and the patients' actual hand motions are recorded on screen.

In the first stage of development of this new program, computer scientists Dr. Larry Manevitz of the University of Haifa, together with Dr. Uri Feintuch, a neuroscientist from Hebrew University and a research fellow at the Haifa's Caesarea Rothschild Institute for Interdisciplinary Applications of Computer Science, and Eugene Mednikov, a computer science graduate student, fed video sessions of this virtual reality therapy into their newly developed program. With the new program, the computer "learned" to differentiate between different types of brain injuries: cerebrovascular accident (CVA) and traumatic brain injury (TBI). During further testing, the computer was able to accurately diagnose, between 90%-98% of the time, whether the patient was healthy, or had suffered a traumatic brain injury or a stroke.

Diagnosis, says Dr. Manevitz, is the most basic part of treatment – any doctor and many healthcare workers can correctly diagnose severe brain injuries. While this study is an important advance in the field of computer science, it will not directly help society. What is important, however, is the next phase of development, in which the computer is able to do things that doctors cannot. "As soon as the computer identified the injury, we have a model that we can use for further testing and analysis – something that cannot be done on live patients. Using a computer model, we can experiment with different treatment options and decide which will be the most effective. The computer can also define how much the patient will be able to rehabilitate. These are things that would take a long time for medicine to accomplish, and some of them cannot be done at all," explained Dr. Manevitz.

For example, the computer can simulate how the patient will respond if the virtual reality therapy throws more balls to the patient's left side than to the right or if any other change would be beneficial for rehabilitation. The computer can quickly examine tens of different possibilities in a very short time. Using the computer will help avoid spending time on treatments that will not benefit the patient, or worse, cause harm.

"Our next step is to find similarities in the behavior of people in sub-groups of brain injuries. The human eye may not be able to see such similarities, but a computer would easily be able to pick them up. As soon as we are able to identify similarities in different sub-groups, new avenues of effective treatment will open up for doctors," summarized Dr. Manevitz.

Amir Gilat | EurekAlert!
Further information:
http://www.haifa.ac.il

More articles from Information Technology:

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

nachricht 3-D scanning with water
24.07.2017 | Association for Computing Machinery

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>