Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue, IU create new ’tera-scale’ supercomputer grid

12.06.2002


IBM supercomputers connected via high-speed, optical-fiber network



WEST LAFAYETTE, Ind. – Purdue University and Indiana University have succeeded in linking their IBM supercomputers in a computational grid via the universities’ high-speed optical network, creating a facility capable of performing a trillion operations per second.

The process works by breaking complex programs into small segments, which are then "distributed" across hundreds of separate processors contained within the two supercomputers. As a result, the two combined computers are able to process ultra-complex applications that ordinarily would have been too large for either computer to handle separately.


When fully functional, the supercomputer network – referred to as the Indiana Virtual Machine Room – will be the first in the nation to tie together university-owned computers with a combined peak capacity of more than one teraflop, or more than a trillion operations per second, said James Bottum, Purdue’s vice president for information technology.

The supercomputers are connected via the state’s new high-performance, optical-fiber network, called I-Light, which enables the exchange of large amounts of information at the speed of light. Purdue and IU tested the system for the first time last month.

The supercomputer grid will enable researchers to perform innovative and massive new calculations, including the simulation of "synthetic environments," applications that help to predict how millions of people might react to situations ranging from product marketing to natural disasters. The tera-scale capability also will help scientists run complex simulations, such as those that model the behavior of materials at the atomic level or the effects of an earthquake in a metropolitan area, and it will enable the analysis of genomic data to help identify new treatments for human disease.

"What we’ve done here is a proof of concept for a system that pools computer resources," Bottum said. "We are pushing the computational frontiers, creating a computational grid that spans geographic boundaries."

Combined, IU’s teraflop supercomputer and Purdue’s IBM supercomputer contain more than 900 processors, for a combined peak theoretical capacity of more than 1.4 teraflops, said Michael McRobbie, vice president for information technology and CIO at Indiana University.

"This computational grid will provide researchers at both institutions the benefit of larger total processing capacity than either university has alone," McRobbie said.

The linkage takes advantage of Purdue’s large memory configuration and IU’s raw computation power. Having the combined horsepower of two supercomputers will give the faculty and researchers at both institutions more flexibility in planning applications and sharing cycles and capacity.

"What we are effectively doing is building, virtually, a large computer out of multiple pieces," said David Moffett, Purdue’s associate vice president for information technology for research computing services. "We are leveraging resources and using I-Light to eventually solve problems we couldn’t have tackled before."

Applications that will be explored include environments called "synthetic economies," in which the behavior of millions of consumers can be predicted for a given economic scenario. The simulations, which are based on traditional military war-gaming, enable researchers and business people to see the consequences of their decisions and actions in real time. Possible applications include simulations that predict how consumers would respond to new promotional campaigns; changes in the pricing of particular products or the introduction of new products; what would happen if companies entered each others’ markets; and how changes in technology, regulatory laws or consumer demand would affect particular markets.

The software that makes the complex simulations possible was developed by Alok R. Chaturvedi, an associate professor of management at Purdue’s Krannert School of Management, and Shailendra Mehta, director of entrepreneurism and small business outreach at the Krannert School.

"What we do in our synthetic environment is create artificial people," Chaturvedi said. "They are calibrated based on real data, and they behave just as people do in the real world.

"Now, what the distributed tera-scale environment will do is allow us to create artificial agents at very fine granularities. This advanced computing environment will enable us to create a synthetic environment that contains more elements, or more virtual people, and will provide a more accurate, detailed representation of the reality."

The tera-scale capability has enabled the researchers to expand the number of people in a synthetic environment into the millions, compared to hundreds for conventional applications. Tera-scale computation also allows synthetic environments to be changed on the fly to fit new applications, said Chaturvedi, who has been working on the software since 1993 and has used it to solve problems for the U.S. Naval Air Command, U.S. Army Recruiting Command and companies in the personal computer and agribusiness industries.

"Life sciences computing also presents extremely large and complex computational challenges," said Craig Stewart, director of research and academic computing at Indiana University. "The linkage of the state’s two largest university-owned supercomputers will make possible analyses by life scientists affiliated with the Indiana Genomics Initiative that would otherwise be impossible."

The supercomputer grid has been tested with fastDNAml, a program that infers evolutionary relationships from DNA sequence data. IU has previously distributed this program among Indiana, Singapore and Australia – but on a limited-term basis. The universities’ computational grid holds the potential of being a valuable computational resource that will enhance research in many scientific disciplines at both campuses and will help build the state’s reputation as a hub of advanced information technology development.

Purdue has recently upgraded its IBM supercomputer through the IBM Shared University Research Program, which promotes research and strengthens ties between IBM and universities. Indiana University upgraded its IBM supercomputer to just more than 1 teraflop last year, making it the largest university-owned supercomputer in the United States. This upgrade was made possible in part by a grant from IBM and funding made available for the Indiana Genomics Initiative by the Lilly Endowment Inc.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Sources: James Bottum, (765) 496-2266, jb@purdue.edu

David Moffett, (765) 496-3886, dpm@purdue.edu

Michael McRobbie (812) 855-4717, vpit@indiana.edu

Craig Stewart, (812) 855-4240, stewart@indiana.edu

Emil Venere | EurekAlert

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>