Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue, IU create new ’tera-scale’ supercomputer grid

12.06.2002


IBM supercomputers connected via high-speed, optical-fiber network



WEST LAFAYETTE, Ind. – Purdue University and Indiana University have succeeded in linking their IBM supercomputers in a computational grid via the universities’ high-speed optical network, creating a facility capable of performing a trillion operations per second.

The process works by breaking complex programs into small segments, which are then "distributed" across hundreds of separate processors contained within the two supercomputers. As a result, the two combined computers are able to process ultra-complex applications that ordinarily would have been too large for either computer to handle separately.


When fully functional, the supercomputer network – referred to as the Indiana Virtual Machine Room – will be the first in the nation to tie together university-owned computers with a combined peak capacity of more than one teraflop, or more than a trillion operations per second, said James Bottum, Purdue’s vice president for information technology.

The supercomputers are connected via the state’s new high-performance, optical-fiber network, called I-Light, which enables the exchange of large amounts of information at the speed of light. Purdue and IU tested the system for the first time last month.

The supercomputer grid will enable researchers to perform innovative and massive new calculations, including the simulation of "synthetic environments," applications that help to predict how millions of people might react to situations ranging from product marketing to natural disasters. The tera-scale capability also will help scientists run complex simulations, such as those that model the behavior of materials at the atomic level or the effects of an earthquake in a metropolitan area, and it will enable the analysis of genomic data to help identify new treatments for human disease.

"What we’ve done here is a proof of concept for a system that pools computer resources," Bottum said. "We are pushing the computational frontiers, creating a computational grid that spans geographic boundaries."

Combined, IU’s teraflop supercomputer and Purdue’s IBM supercomputer contain more than 900 processors, for a combined peak theoretical capacity of more than 1.4 teraflops, said Michael McRobbie, vice president for information technology and CIO at Indiana University.

"This computational grid will provide researchers at both institutions the benefit of larger total processing capacity than either university has alone," McRobbie said.

The linkage takes advantage of Purdue’s large memory configuration and IU’s raw computation power. Having the combined horsepower of two supercomputers will give the faculty and researchers at both institutions more flexibility in planning applications and sharing cycles and capacity.

"What we are effectively doing is building, virtually, a large computer out of multiple pieces," said David Moffett, Purdue’s associate vice president for information technology for research computing services. "We are leveraging resources and using I-Light to eventually solve problems we couldn’t have tackled before."

Applications that will be explored include environments called "synthetic economies," in which the behavior of millions of consumers can be predicted for a given economic scenario. The simulations, which are based on traditional military war-gaming, enable researchers and business people to see the consequences of their decisions and actions in real time. Possible applications include simulations that predict how consumers would respond to new promotional campaigns; changes in the pricing of particular products or the introduction of new products; what would happen if companies entered each others’ markets; and how changes in technology, regulatory laws or consumer demand would affect particular markets.

The software that makes the complex simulations possible was developed by Alok R. Chaturvedi, an associate professor of management at Purdue’s Krannert School of Management, and Shailendra Mehta, director of entrepreneurism and small business outreach at the Krannert School.

"What we do in our synthetic environment is create artificial people," Chaturvedi said. "They are calibrated based on real data, and they behave just as people do in the real world.

"Now, what the distributed tera-scale environment will do is allow us to create artificial agents at very fine granularities. This advanced computing environment will enable us to create a synthetic environment that contains more elements, or more virtual people, and will provide a more accurate, detailed representation of the reality."

The tera-scale capability has enabled the researchers to expand the number of people in a synthetic environment into the millions, compared to hundreds for conventional applications. Tera-scale computation also allows synthetic environments to be changed on the fly to fit new applications, said Chaturvedi, who has been working on the software since 1993 and has used it to solve problems for the U.S. Naval Air Command, U.S. Army Recruiting Command and companies in the personal computer and agribusiness industries.

"Life sciences computing also presents extremely large and complex computational challenges," said Craig Stewart, director of research and academic computing at Indiana University. "The linkage of the state’s two largest university-owned supercomputers will make possible analyses by life scientists affiliated with the Indiana Genomics Initiative that would otherwise be impossible."

The supercomputer grid has been tested with fastDNAml, a program that infers evolutionary relationships from DNA sequence data. IU has previously distributed this program among Indiana, Singapore and Australia – but on a limited-term basis. The universities’ computational grid holds the potential of being a valuable computational resource that will enhance research in many scientific disciplines at both campuses and will help build the state’s reputation as a hub of advanced information technology development.

Purdue has recently upgraded its IBM supercomputer through the IBM Shared University Research Program, which promotes research and strengthens ties between IBM and universities. Indiana University upgraded its IBM supercomputer to just more than 1 teraflop last year, making it the largest university-owned supercomputer in the United States. This upgrade was made possible in part by a grant from IBM and funding made available for the Indiana Genomics Initiative by the Lilly Endowment Inc.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Sources: James Bottum, (765) 496-2266, jb@purdue.edu

David Moffett, (765) 496-3886, dpm@purdue.edu

Michael McRobbie (812) 855-4717, vpit@indiana.edu

Craig Stewart, (812) 855-4240, stewart@indiana.edu

Emil Venere | EurekAlert

More articles from Information Technology:

nachricht Underwater acoustic localization of marine mammals and vehicles
23.11.2017 | IMDEA Networks Institute

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>