Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mobile grids nurture virtual organisations

Organisations co-operating on a task often have difficulties exchanging information and sharing resources. European researchers demonstrate how grid technology could let diverse players, both fixed and mobile, share a common information space both in emergencies and for routine business needs.

A bomb goes off in a crowded shopping centre. Police, fire and paramedic services respond along with the centre’s own security staff. A neighbouring school is evacuated and hospitals are put on alert. Several local and national government agencies, utility companies, transport companies and businesses become drawn into the aftermath.

How the crisis is handled depends crucially on the communications systems in use. Can the police talk to the local security staff? Can the fire service exchange information on casualties with the paramedics? Who can access the images from the surveillance cameras? Where will the evacuated children go?

In situations like this, many organisations and individuals who normally work independently need to come together quickly to form a ‘virtual organisation’. Unfortunately, the infrastructure to permit free communication between everyone within such virtual organisations has been lacking – until now.

The solution comes from a convergence of interest between two communities that historically have had little to do with each other. One is research scientists using the most powerful supercomputers, often based at selected universities. To share these scarce resources they use a grid, analogous to an electricity supply grid, so that subscribing users can tap into the computing power wherever they may be.

The second group is the network providers and telecom companies who are busy building ever-faster telephone and data networks, especially the ‘next-generation’ networks that will bring ultrafast internet links into every home.

Dynamic collaborations
From the overlap between these two areas comes a new idea: can we provide a service grid to supply all manner of resources not just for researchers but also for public authorities, businesses and individuals? And can mobile users be accommodated as well?

The idea crystallised as Akogrimo, an EU-funded project to develop the infrastructure to make such a grid possible. “We’re talking about a mechanism to enable dynamic collaborations between different organisations,” says project manager Stefan Wesner of Stuttgart University.

Now that the project has finished, the partners, led by project coordinator Telefónica, are looking for ways to develop commercial applications.

A key difference with other grid projects is that Akogrimo is designed to link not only organisations but also individuals, often using mobile devices. It can accommodate virtual organisations that are set up in advance for day-to-day tasks and also those, such as in a crisis situation, that come into being at very short notice.

It also copes with many different kinds of devices. “A user may connect to the grid using different devices,” Wesner explains. “It could be a fixed workstation, it could be a small PDA, or some other device. They all have different capabilities, screen size, computational power, and use different bandwidths.”

Akogrimo can also keep track of people switching from one device to another without breaking communication, ideal for individuals on the move. The imagined bomb attack was the major application demonstrated in Akogrimo with the assistance of the local authority and emergency services in Bristol.

“It was a bit like having a single information space between all the people involved in the crisis,” says Wesner.

Remote diagnosis
Many applications in telemedicine are possible, especially to support paramedics or other mobile response teams. Diagnostic techniques usually only available in hospitals could be brought to the patient through the grid, along with audiovisual consultations with clinical specialists.

Likewise, service technicians in the field could access powerful diagnostic tools and expert advice wherever they go. For emergency repairs to expensive products, such as aircraft, this could be very cost effective.

Akogrimo also has applications in education, not just in distance learning but, for example, in supporting students on field trips so they can easily share the information they gather.

Of course, in a commercial grid, where services are supplied by many businesses to many users, the problem arises of how to keep track of who owes what to whom. Akogrimo has solved this too.

“We have a model where you get a single bill for all these services from different companies, combined as a single payment,” Wesner told ICT Results. “I would say this is one of our key innovations.”

Many other projects around the world are looking at the potential of grids for providing services, but Akogrimo is the only one that has designed an infrastructure for mobile users.

Some of the partners are now working on a commercial application of Akogrimo, known as Sea Cage Gateway, to support the offshore fish farming community in Norway.

“Europe is actually in a leading position in the commercial next-generation grid area,” Wesner points out. “The funding for grids in the USA is mostly provided by the departments of energy and defence so their applications are quite different. Everything to do with the commercial usage of grids is well influenced by European stakeholders.”

Christian Nielsen | alfa
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>