Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From glass eyes to colour-fast digital prints

07.06.2002


Top quality colour printing could be revolutionised thanks to the revival in Bristol of an old printing process once used to create, among other things, colour charts for selecting glass eyes. Art researchers from the University of the West of England have discovered a 21st century use for the process, known as collotype, which fell out of favour during the early 1900s. As an added bonus, new inks are being developed which unlike current computer colour printouts, won`t fade over time.



In the past, the process, which was slow and extremely labour intensive for printers, used gelatine-coated plates to create accurate reproductions of works of art, with all the subtle colour tones of the original. However staff from UWE`s Faculty of Art, Media and Design have revived the technique and found that it can be linked up with computerised printing technology to open up new vistas in accurate colour reproduction.

The findings of the UWE research have just been revealed in a paper given by Dr Paul Thirkell at an international conference in Leipzig, Germany.


"UWE is now a world authority in this technique, which was so nearly lost," said Steve Hoskins, director of UWE`s Centre for Fine Print Research. "This was the first international Collotype conference and enabled print experts from around the world to learn from our discoveries."

"Collotype was one of the first photomechanical printing methods to be developed during the mid-nineteenth century, and was a means of commercially reproducing some of the most exact facsimiles ever produced. Despite its unparalleled image and colour fidelity, the process relied heavily on the skill of highly trained printers to make it worthwhile.

"Collotype declined as printing techniques such as offset lithography and letterpress took over in the mid-twentieth century, although the last printer capable of the process did not close until the 1980s. This was Cotswold Collotype at Wotton-under-Edge, in Gloucestershire, which from the 1920s until the 1960s produced art posters for the home. Owned for a time by Brooke Bond, the works also printed cigarette cards and more quirkily, shade-charts for the NHS showing the subtle variations in the colours of glass eyes that were available."

As well as providing a faithful record of original artworks, the collotype process could also answer a growing need for permanent, archive-quality records. Already, digitally printed reproductions using synthetic inks have been found to fade and lack permanence. Further avenues for research include developing the special papers and inks required for collotype. None of the original ink manufacturers exists, but UWE researchers are working on developing suitable inks based on traditional ingredients such as pure pigment and linseed oil, in a final marrying of old and new technologies.

Julia Weston | alfa
Further information:
http://www.uwe.ac.uk

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Fraunhofer HHI with latest VR technologies at NAB in Las Vegas

24.04.2017 | Trade Fair News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>