Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One million trillion ‘flops’ per second targeted by new Institute for Advanced Architectures

25.02.2008
‘Exascale’ computing envisioned by Sandia and Oak Ridge researchers

Preparing groundwork for an exascale computer is the mission of the new Institute for Advanced Architectures, launched jointly at Sandia and Oak Ridge national laboratories.

An exaflop is a thousand times faster than a petaflop, itself a thousand times faster than a teraflop. Teraflop computers —the first was developed 10 years ago at Sandia — currently are the state of the art. They do trillions of calculations a second. Exaflop computers would perform a million trillion calculations per second.

The idea behind the institute —under consideration for a year and a half prior to its opening — is “to close critical gaps between theoretical peak performance and actual performance on current supercomputers,” says Sandia project lead Sudip Dosanjh. “We believe this can be done by developing novel and innovative computer architectures.”

Ultrafast supercomputers improve detection of real-world conditions by helping researchers more closely examine the interactions of larger numbers of particles over time periods divided into smaller segments.

“An exascale computer is essential to perform more accurate simulations that, in turn, support solutions for emerging science and engineering challenges in national defense, energy assurance, advanced materials, climate, and medicine,” says James Peery, director of computation, computers and math.

The institute is funded in FY08 by congressional mandate at $7.4 million. It is supported by the National Nuclear Security Administration and the Department of Energy’s Office of Science. Sandia is an NNSA laboratory.

One aim, Dosanjh says, is to reduce or eliminate the growing mismatch between data movement and processing speeds.

Processing speed refers to the rapidity with which a processor can manipulate data to solve its part of a larger problem. Data movement refers to the act of getting data from a computer’s memory to its processing chip and then back again. The larger the machine, the farther away from a processor the data may be stored and the slower the movement of data.

“In an exascale computer, data might be tens of thousands of processors away from the processor that wants it,” says Sandia computer architect Doug Doerfler. “But until that processor gets its data, it has nothing useful to do. One key to scalability is to make sure all processors have something to work on at all times.”

Compounding the problem is new technology that has enabled designers to split a processor into first two, then four, and now eight cores on a single die. Some special-purpose processors have 24 or more cores on a die. Dosanjh suggests there might eventually be hundreds operating in parallel on a single chip.

“In order to continue to make progress in running scientific applications at these [very large] scales,” says Jeff Nichols, who heads the Oak Ridge branch of the institute, “we need to address our ability to maintain the balance between the hardware and the software. There are huge software and programming challenges and our goal is to do the critical R&D to close some of the gaps.”

Operating in parallel means that each core can work its part of the puzzle simultaneously with other cores on a chip, greatly increasing the speed a processor operates on data. The method does not require faster clock speeds, measured in faster gigahertz, which would generate unmanageable amounts of heat to dissipate as well as current leakage.

The new method bolsters the continued relevance of Moore’s Law, the 1965 observation of Intel cofounder Gordon Moore that the number of transistors placed on a single computer chip will double approximately every two years.

Another problem for the institute is to reduce the amount of power needed to run a future exascale computer.

“The electrical power needed with today’s technologies would be many tens of megawatts — a significant fraction of a power plant. A megawatt can cost as much as a million dollars a year,” says Dosanjh. “We want to bring that down.”

Sandia and Oak Ridge will work together on these and other problems, he says. “Although all of our efforts will be collaborative, in some areas Sandia will take the lead and Oak Ridge may lead in others, depending on who has the most expertise in a given discipline.” In addition, a key component of the institute will be the involvement of industry and universities.

A spontaneous demonstration of wide interest in faster computing was evidenced in the response to an invitation-only workshop, “Memory Opportunities for High-Performing Computing,” sponsored in January by the institute.

Workshop organizers planned for 25 participants but nearly 50 attended. Attendees represented the national labs, DOE, National Science Foundation, National Security Agency, Defense Advanced Research Projects Agency, and leading manufacturers of processors and supercomputing systems.

Ten years ago, people worldwide were astounded at the emergence of a teraflop supercomputer — that would be Sandia’s ASCI Red — able in one second to perform a trillion mathematical operations.

More recently, bloggers seem stunned that a machine capable of petaflop computing — a thousand times faster than a teraflop — could soon break the next barrier of a thousand trillion mathematical operations a second.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Sandia news media contact: Neal Singer, nsinger@sandia.gov, (505) 845-7078

Neal Singer | EurekAlert!
Further information:
http://www.sandia.gov

More articles from Information Technology:

nachricht Powerful IT security for the car of the future – research alliance develops new approaches
25.05.2018 | Universität Ulm

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>