Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One million trillion ‘flops’ per second targeted by new Institute for Advanced Architectures

25.02.2008
‘Exascale’ computing envisioned by Sandia and Oak Ridge researchers

Preparing groundwork for an exascale computer is the mission of the new Institute for Advanced Architectures, launched jointly at Sandia and Oak Ridge national laboratories.

An exaflop is a thousand times faster than a petaflop, itself a thousand times faster than a teraflop. Teraflop computers —the first was developed 10 years ago at Sandia — currently are the state of the art. They do trillions of calculations a second. Exaflop computers would perform a million trillion calculations per second.

The idea behind the institute —under consideration for a year and a half prior to its opening — is “to close critical gaps between theoretical peak performance and actual performance on current supercomputers,” says Sandia project lead Sudip Dosanjh. “We believe this can be done by developing novel and innovative computer architectures.”

Ultrafast supercomputers improve detection of real-world conditions by helping researchers more closely examine the interactions of larger numbers of particles over time periods divided into smaller segments.

“An exascale computer is essential to perform more accurate simulations that, in turn, support solutions for emerging science and engineering challenges in national defense, energy assurance, advanced materials, climate, and medicine,” says James Peery, director of computation, computers and math.

The institute is funded in FY08 by congressional mandate at $7.4 million. It is supported by the National Nuclear Security Administration and the Department of Energy’s Office of Science. Sandia is an NNSA laboratory.

One aim, Dosanjh says, is to reduce or eliminate the growing mismatch between data movement and processing speeds.

Processing speed refers to the rapidity with which a processor can manipulate data to solve its part of a larger problem. Data movement refers to the act of getting data from a computer’s memory to its processing chip and then back again. The larger the machine, the farther away from a processor the data may be stored and the slower the movement of data.

“In an exascale computer, data might be tens of thousands of processors away from the processor that wants it,” says Sandia computer architect Doug Doerfler. “But until that processor gets its data, it has nothing useful to do. One key to scalability is to make sure all processors have something to work on at all times.”

Compounding the problem is new technology that has enabled designers to split a processor into first two, then four, and now eight cores on a single die. Some special-purpose processors have 24 or more cores on a die. Dosanjh suggests there might eventually be hundreds operating in parallel on a single chip.

“In order to continue to make progress in running scientific applications at these [very large] scales,” says Jeff Nichols, who heads the Oak Ridge branch of the institute, “we need to address our ability to maintain the balance between the hardware and the software. There are huge software and programming challenges and our goal is to do the critical R&D to close some of the gaps.”

Operating in parallel means that each core can work its part of the puzzle simultaneously with other cores on a chip, greatly increasing the speed a processor operates on data. The method does not require faster clock speeds, measured in faster gigahertz, which would generate unmanageable amounts of heat to dissipate as well as current leakage.

The new method bolsters the continued relevance of Moore’s Law, the 1965 observation of Intel cofounder Gordon Moore that the number of transistors placed on a single computer chip will double approximately every two years.

Another problem for the institute is to reduce the amount of power needed to run a future exascale computer.

“The electrical power needed with today’s technologies would be many tens of megawatts — a significant fraction of a power plant. A megawatt can cost as much as a million dollars a year,” says Dosanjh. “We want to bring that down.”

Sandia and Oak Ridge will work together on these and other problems, he says. “Although all of our efforts will be collaborative, in some areas Sandia will take the lead and Oak Ridge may lead in others, depending on who has the most expertise in a given discipline.” In addition, a key component of the institute will be the involvement of industry and universities.

A spontaneous demonstration of wide interest in faster computing was evidenced in the response to an invitation-only workshop, “Memory Opportunities for High-Performing Computing,” sponsored in January by the institute.

Workshop organizers planned for 25 participants but nearly 50 attended. Attendees represented the national labs, DOE, National Science Foundation, National Security Agency, Defense Advanced Research Projects Agency, and leading manufacturers of processors and supercomputing systems.

Ten years ago, people worldwide were astounded at the emergence of a teraflop supercomputer — that would be Sandia’s ASCI Red — able in one second to perform a trillion mathematical operations.

More recently, bloggers seem stunned that a machine capable of petaflop computing — a thousand times faster than a teraflop — could soon break the next barrier of a thousand trillion mathematical operations a second.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Sandia news media contact: Neal Singer, nsinger@sandia.gov, (505) 845-7078

Neal Singer | EurekAlert!
Further information:
http://www.sandia.gov

More articles from Information Technology:

nachricht New technology enables 5-D imaging in live animals, humans
16.01.2017 | University of Southern California

nachricht Fraunhofer FIT announces CloudTeams collaborative software development platform – join it for free
10.01.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>