Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fast-learning computer translates from four languages

21.02.2008
Modern approaches to machine translation between languages require the use of a large ‘corpus’ of literature in each language. Now a European project has demonstrated a cheaper solution which compares favourably with the market leaders in translating from Dutch, German, Greek or Spanish into English.

The European Union now has 23 official languages. That means documents written in one language may need to be translated into any of 22 others, a total of 253 possible language pairs. Small wonder that the institutions of the European Union, and organisations dealing with international commerce, among others, have a keen interest in automating the process where they can.

Efforts to use computers to translate languages, known as machine translation, date from the 1950s, yet computers still cannot compete with human translators for the quality of the results. Machine translation works best for formal texts in specialised areas where vocabulary is unambiguous and sentence patterns are limited. Aircraft manufacturers, for example, have devised their own systems for quickly translating technical manuals into many languages.

The EU has been active in promoting research in this field since the large Eurotra project of the 1980s. In common with other projects of the time, Eurotra used a ‘rules-based’ approach where the computer is taught the rules of syntax and applies them to translate a text from one language to another. This is also the basis of most commercial translation software.

But since the early 1990s the new concept of ‘statistical’ translation has gained ground in the machine translation community, arising out of research into speech recognition. This dispenses with rules in favour of using statistical methods based on a text ‘corpus’.

A corpus is a large body of written material, amounting to tens of millions of words, intended to be representative of a language. Parallel corpora contain the same material in two or more languages and the computer compares the corpora to learn how words and expressions in one language correspond to those in another. An important example is a parallel corpus of 11 languages based on the proceedings of the European Parliament.

Pattern matching
“Parallel corpora are expensive and rare,” says Dr Stella Markantonatou, of the Institute for Language and Speech Processing in Athens, which coordinates the EU’s METIS II project. “They exist only for a very few languages and in small amounts and in specialised texts. So our idea was to try to do statistically based machine translation without this resource, using just monolingual corpora of the target language. For instance, to translate from Greek into English we use a large English corpus.”

To use a single corpus you need a dictionary for the vocabulary and a way to understand the syntax. In the original METIS project, completed in 2003, the corpus was processed to analysis sentence patterns and the text to be translated was then matched against the patterns.

In Greek, for example, the verb can precede the subject of a sentence. “So if you come in with a Greek sentence, ‘Eats Mary a cake’, you would like the machine to be able to translate it into English and rearrange the words to make ‘Mary eats a cake’,” explains Dr Markantonatou. “Pattern matching is a good way of doing that because it is able to take patterns from the source language and make them like the target language.”

METIS II takes the principle further by matching patterns at the ‘chunk’ level, a phrase or fragment of a sentence rather than a sentence as a whole, as this makes the pattern matching more efficient.

It can also use grammar rules to generate alternative possibilities for the translation and then use the corpus to identify which is the more probable. For example, where English would say ‘I like cakes’, some European languages might use the form ‘cakes please me.’ So in translating into English, METIS II can test alternative interpretations against the English language corpus. In this example, 'cakes please me' would get a very low score while the closest match 'I like cakes' would score highly.

Four languages
The partners have now built a system that translates from Greek, Spanish, German or Dutch into English. Trials so far show that it performs well in comparison with SYSTRAN, the rules-based market leader in machine translation. Considering that SYSTRAN is based on half a century of development while METIS II has only run for three years, that is quite an achievement. A prototype is already available on the internet.

The problem now is what to do next. Results from METIS II are being followed up in national research programmes in Spain and Belgium, but there are no plans as yet to further develop the whole system. Some of the components created in the project, such as dictionaries and associated language tools, could be marketable in their own right, but would need an industrial partner to provide the investment needed to turn the prototype into a commercial product.

“For Greek, it would be an excellent opportunity because there is nothing really good for [translating it] at present,” Dr Markantonatou tells ICT Results. “With a better lexicon, fixing bugs and making algorithms more efficient, this kind of thing could work. In another two or three years, METIS could be a very serious competitor to SYSTRAN. It’s a matter of funding.”

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89533

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>