Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fast-learning computer translates from four languages

21.02.2008
Modern approaches to machine translation between languages require the use of a large ‘corpus’ of literature in each language. Now a European project has demonstrated a cheaper solution which compares favourably with the market leaders in translating from Dutch, German, Greek or Spanish into English.

The European Union now has 23 official languages. That means documents written in one language may need to be translated into any of 22 others, a total of 253 possible language pairs. Small wonder that the institutions of the European Union, and organisations dealing with international commerce, among others, have a keen interest in automating the process where they can.

Efforts to use computers to translate languages, known as machine translation, date from the 1950s, yet computers still cannot compete with human translators for the quality of the results. Machine translation works best for formal texts in specialised areas where vocabulary is unambiguous and sentence patterns are limited. Aircraft manufacturers, for example, have devised their own systems for quickly translating technical manuals into many languages.

The EU has been active in promoting research in this field since the large Eurotra project of the 1980s. In common with other projects of the time, Eurotra used a ‘rules-based’ approach where the computer is taught the rules of syntax and applies them to translate a text from one language to another. This is also the basis of most commercial translation software.

But since the early 1990s the new concept of ‘statistical’ translation has gained ground in the machine translation community, arising out of research into speech recognition. This dispenses with rules in favour of using statistical methods based on a text ‘corpus’.

A corpus is a large body of written material, amounting to tens of millions of words, intended to be representative of a language. Parallel corpora contain the same material in two or more languages and the computer compares the corpora to learn how words and expressions in one language correspond to those in another. An important example is a parallel corpus of 11 languages based on the proceedings of the European Parliament.

Pattern matching
“Parallel corpora are expensive and rare,” says Dr Stella Markantonatou, of the Institute for Language and Speech Processing in Athens, which coordinates the EU’s METIS II project. “They exist only for a very few languages and in small amounts and in specialised texts. So our idea was to try to do statistically based machine translation without this resource, using just monolingual corpora of the target language. For instance, to translate from Greek into English we use a large English corpus.”

To use a single corpus you need a dictionary for the vocabulary and a way to understand the syntax. In the original METIS project, completed in 2003, the corpus was processed to analysis sentence patterns and the text to be translated was then matched against the patterns.

In Greek, for example, the verb can precede the subject of a sentence. “So if you come in with a Greek sentence, ‘Eats Mary a cake’, you would like the machine to be able to translate it into English and rearrange the words to make ‘Mary eats a cake’,” explains Dr Markantonatou. “Pattern matching is a good way of doing that because it is able to take patterns from the source language and make them like the target language.”

METIS II takes the principle further by matching patterns at the ‘chunk’ level, a phrase or fragment of a sentence rather than a sentence as a whole, as this makes the pattern matching more efficient.

It can also use grammar rules to generate alternative possibilities for the translation and then use the corpus to identify which is the more probable. For example, where English would say ‘I like cakes’, some European languages might use the form ‘cakes please me.’ So in translating into English, METIS II can test alternative interpretations against the English language corpus. In this example, 'cakes please me' would get a very low score while the closest match 'I like cakes' would score highly.

Four languages
The partners have now built a system that translates from Greek, Spanish, German or Dutch into English. Trials so far show that it performs well in comparison with SYSTRAN, the rules-based market leader in machine translation. Considering that SYSTRAN is based on half a century of development while METIS II has only run for three years, that is quite an achievement. A prototype is already available on the internet.

The problem now is what to do next. Results from METIS II are being followed up in national research programmes in Spain and Belgium, but there are no plans as yet to further develop the whole system. Some of the components created in the project, such as dictionaries and associated language tools, could be marketable in their own right, but would need an industrial partner to provide the investment needed to turn the prototype into a commercial product.

“For Greek, it would be an excellent opportunity because there is nothing really good for [translating it] at present,” Dr Markantonatou tells ICT Results. “With a better lexicon, fixing bugs and making algorithms more efficient, this kind of thing could work. In another two or three years, METIS could be a very serious competitor to SYSTRAN. It’s a matter of funding.”

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89533

More articles from Information Technology:

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

nachricht 3-D scanning with water
24.07.2017 | Association for Computing Machinery

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>