Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice computer chip makes Technology Review's top 10

20.02.2008
PCMOS makes MIT magazine's coveted top 10 list of emerging technologies

Rice University's technology for a "gambling" computer chip, which could boost battery life as much as tenfold on cell phones and laptops while slashing development costs for chipmakers, has been named to MIT Technology Review's coveted annual top 10 list of technologies that are "most likely to alter industries, fields of research, and even the way we live."

Technology Review, one of the world's oldest and most respected trade publications, features its annual TR10 Special Report in the March/April issue. Both the Department of Defense and chipmaker Intel have underwritten research on Rice's new chip, which is known as PCMOS.

"We are challenging a long-held convention in computing, the notion that 'information' is, by definition, correct and exact," said PCMOS inventor Krishna Palem, Rice's Ken and Audrey Kennedy Professor in Computer Science. "In fact, the human mind routinely makes do with imprecise and incomplete information. Our goal is create a new computer architecture that takes advantage of this innate human ability in order to slash power consumption and hold down microchip design costs."

The PCMOS concept is deceptively simple; slash power to some transistors on the processor and take a chance that a few calculations will be incorrect. The technology piggybacks onto "complementary metal-oxide semiconductor" technology, or CMOS, the basic technology chipmakers already use. The probability of calculation errors yields the name "probabilistic" CMOS, or PCMOS.

One example of the way people deal with incomplete information comes in watching video on a cell phone, Palem said. His group's previous work has shown that viewers cannot tell the difference between video processed on regular microchips and PCMOS chips. Palem said the key is knowing how people "value" particular numbers. For example, when scanning a bank statement people will almost certainly catch an error worth thousands of dollars, while casting a blind eye to errors worth only pennies.

"Money is just the most obvious example, but we assign values automatically to most of the information we take in," Palem said. "In the case of the video, we concentrate our precise processing on the parts of the picture that are most valuable."

PCMOS chips compute differently than regular chips because of way electricity moves through their transistors. Rather than pushing the same amount of power through all parts of the PCMOS chip, voltage is assigned on a sliding scale. The upshot being that the numbers that users value the most -- the thousands place on the bank statement, for example -- are always correct, while less valuable numbers may be incorrect.

"Professor Palem is proposing a radical change in how we use integrated circuits," said David Rutledge, chair of the division of engineering and applied science at the California Institute of Technology. "Turning down the supply voltage reduces the power requirements and introduces randomness that has the potential to be exploited for computations."

Shekhar Borkar, an Intel Fellow and Director of Intel’s Microprocessor Technology Lab. said, "Innovative technologies like PCMOS will become increasingly important as the industry looks to maintain pace with Moore’s Law."

"Moore's Law," a concept first put forward by Intel co-founder Gordon Moore, refers to the industry's decades-long track record of doubling transistors per square inch on integrated circuits every 18 months. This exponential shrinkage has resulted in transistors on today's chips that measure a scant 45 billionths of a meter across. Palem, who recently finished a yearlong appointment as a Gordon Moore Distinguished Scholar at Caltech, said that as chipmakers strive to maintain Moore's Law, the basic physics of CMOS will yield transistors that are inherently probabilistic.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Information Technology:

nachricht An AI that makes road maps from aerial images
18.04.2018 | Massachusetts Institute of Technology, CSAIL

nachricht Beyond the clouds: Networked clouds in a production setting
04.04.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>