Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice computer chip makes Technology Review's top 10

20.02.2008
PCMOS makes MIT magazine's coveted top 10 list of emerging technologies

Rice University's technology for a "gambling" computer chip, which could boost battery life as much as tenfold on cell phones and laptops while slashing development costs for chipmakers, has been named to MIT Technology Review's coveted annual top 10 list of technologies that are "most likely to alter industries, fields of research, and even the way we live."

Technology Review, one of the world's oldest and most respected trade publications, features its annual TR10 Special Report in the March/April issue. Both the Department of Defense and chipmaker Intel have underwritten research on Rice's new chip, which is known as PCMOS.

"We are challenging a long-held convention in computing, the notion that 'information' is, by definition, correct and exact," said PCMOS inventor Krishna Palem, Rice's Ken and Audrey Kennedy Professor in Computer Science. "In fact, the human mind routinely makes do with imprecise and incomplete information. Our goal is create a new computer architecture that takes advantage of this innate human ability in order to slash power consumption and hold down microchip design costs."

The PCMOS concept is deceptively simple; slash power to some transistors on the processor and take a chance that a few calculations will be incorrect. The technology piggybacks onto "complementary metal-oxide semiconductor" technology, or CMOS, the basic technology chipmakers already use. The probability of calculation errors yields the name "probabilistic" CMOS, or PCMOS.

One example of the way people deal with incomplete information comes in watching video on a cell phone, Palem said. His group's previous work has shown that viewers cannot tell the difference between video processed on regular microchips and PCMOS chips. Palem said the key is knowing how people "value" particular numbers. For example, when scanning a bank statement people will almost certainly catch an error worth thousands of dollars, while casting a blind eye to errors worth only pennies.

"Money is just the most obvious example, but we assign values automatically to most of the information we take in," Palem said. "In the case of the video, we concentrate our precise processing on the parts of the picture that are most valuable."

PCMOS chips compute differently than regular chips because of way electricity moves through their transistors. Rather than pushing the same amount of power through all parts of the PCMOS chip, voltage is assigned on a sliding scale. The upshot being that the numbers that users value the most -- the thousands place on the bank statement, for example -- are always correct, while less valuable numbers may be incorrect.

"Professor Palem is proposing a radical change in how we use integrated circuits," said David Rutledge, chair of the division of engineering and applied science at the California Institute of Technology. "Turning down the supply voltage reduces the power requirements and introduces randomness that has the potential to be exploited for computations."

Shekhar Borkar, an Intel Fellow and Director of Intel’s Microprocessor Technology Lab. said, "Innovative technologies like PCMOS will become increasingly important as the industry looks to maintain pace with Moore’s Law."

"Moore's Law," a concept first put forward by Intel co-founder Gordon Moore, refers to the industry's decades-long track record of doubling transistors per square inch on integrated circuits every 18 months. This exponential shrinkage has resulted in transistors on today's chips that measure a scant 45 billionths of a meter across. Palem, who recently finished a yearlong appointment as a Gordon Moore Distinguished Scholar at Caltech, said that as chipmakers strive to maintain Moore's Law, the basic physics of CMOS will yield transistors that are inherently probabilistic.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>