Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New filter clears up fiber optic communications

20.02.2008
Highly Efficient Filters Promise Enhanced Data Transmission for Optical Networks

Researchers at the U.S. Department of Energy’s Ames Laboratory have come up with a potentially perfect way to sort and distribute the massive amounts of data that travel daily over optical fibers to people throughout the world.

The new technology, a three-dimensional photonic crystal add-drop filter, promises greatly enhanced transmission of multiple wavelength channels (wavelengths of light) traveling along the same optical fiber. The innovative filter is a significant achievement in the effort to develop all-optical transport networks that would eliminate electrical components from optical transmission links and guarantee virtually flawless data reception to end users of the Internet and other fiber-based telecommunications systems.

“There are up to 160 wavelength channels traveling through an optical fiber at the same time,” said Rana Biswas, an Ames Laboratory physicist and one of the developers of the new add-drop filter. “That means a lot of dialogue is going on simultaneously.” Biswas, who is also an Iowa State University adjunct associate professor of physics and astronomy and electrical and computer engineering, explained that as information is transported over these multiple channels, it’s necessary to drop off individual wavelength channels at different points on the fiber. At the same time, it’s essential to be able to add data streams into unfilled wavelength channels.

“When the data being transported in multiple frequency channels over an optical fiber comes to a receiving station, you want to be able to pick off just one of those frequencies and send it to an individual end user,” said Biswas. “That’s where these 3-D photonic crystals come into play.”

Biswas and his colleagues, Kai-Ming Ho, an Ames Laboratory senior physicist and an ISU Distinguished Professor of Liberal Arts and Sciences; Gary Tuttle, an ISU associate professor of electrical and computer engineering and a researcher at the university’s Microelectronics Research Center; and Preeti Kohli, a former Iowa State Ph.D. student now at Micron in Manassas, Va. successfully demonstrated that 3-D photonic crystals could serve as add-drop filters, providing greatly enhanced data transmission.

To prove their concept, the researchers used a three-dimensional, microwave-scale photonic crystal constructed from layered alumina rods and containing a full bandgap – a wavelength range in which electromagnetic waves cannot transmit. Just as electronic bandgaps prevent electrons within a certain energy range from passing through a semiconductor, photonic crystals create photonic bandgaps that confine light of certain wavelengths.

The add-drop filter created by the Ames Laboratory team contains an entrance waveguide and an exit waveguide created by removing rod segments from the layered photonic crystal. A one-rod segment separates the two waveguides. (A waveguide is a system or material that can confine and direct electromagnetic waves.) A defect cavity is located one unit cell above the waveguide layer. The waveguides can communicate through the cavity, allowing a specific wavelength frequency to be selected from the input waveguide and transmitted to the output waveguide, excluding other input frequencies and resulting in near 100 percent efficiency for the drop frequencies.

The idea of using photonic crystals for add-drop filters is not new. Since the mid 1990s, many groups worldwide have been working to develop the technology with two-dimensional photonic crystals.

“It works,” Biswas said, “but there is loss of some intensity to the end user because 2-D photonic crystals don’t confine the light completely. For example, in a phone conversation, the voices would dim out. But with 3-D photonic crystal add-drop filters, the communication would be clear.”

Although Biswas, Kohli, Tuttle and Ho have shown that 3-D photonic crystals would make highly efficient add-drop filters, there are still problems to address. Getting the size of the photonic crystals down to work at the wavelengths used for Internet communications – 1.5 microns – is the big challenge. The Ames Lab group now has some of these photonic crystals working in that range, but to make these controlled structures with one input, another output and a defect … that definitely takes some work. A future direction is to simplify the design of the add-drop filter by reducing the layers in the photonic crystal – perhaps having all the action happen in one layer.

The DOE Office of Science, Basic Energy Science Office funded the above research on 3-D photonic crystal add-drop filters.

Ames Laboratory is a U.S. Department of Energy Office of Science laboratory operated for the DOE by Iowa State University. The Lab conducts research into various areas of national concern, including the synthesis and study of new materials, energy resources, high-speed computer design, and environmental cleanup and restoration.

Saren Johnston | EurekAlert!
Further information:
http://www.ameslab.gov

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>