Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New filter clears up fiber optic communications

20.02.2008
Highly Efficient Filters Promise Enhanced Data Transmission for Optical Networks

Researchers at the U.S. Department of Energy’s Ames Laboratory have come up with a potentially perfect way to sort and distribute the massive amounts of data that travel daily over optical fibers to people throughout the world.

The new technology, a three-dimensional photonic crystal add-drop filter, promises greatly enhanced transmission of multiple wavelength channels (wavelengths of light) traveling along the same optical fiber. The innovative filter is a significant achievement in the effort to develop all-optical transport networks that would eliminate electrical components from optical transmission links and guarantee virtually flawless data reception to end users of the Internet and other fiber-based telecommunications systems.

“There are up to 160 wavelength channels traveling through an optical fiber at the same time,” said Rana Biswas, an Ames Laboratory physicist and one of the developers of the new add-drop filter. “That means a lot of dialogue is going on simultaneously.” Biswas, who is also an Iowa State University adjunct associate professor of physics and astronomy and electrical and computer engineering, explained that as information is transported over these multiple channels, it’s necessary to drop off individual wavelength channels at different points on the fiber. At the same time, it’s essential to be able to add data streams into unfilled wavelength channels.

“When the data being transported in multiple frequency channels over an optical fiber comes to a receiving station, you want to be able to pick off just one of those frequencies and send it to an individual end user,” said Biswas. “That’s where these 3-D photonic crystals come into play.”

Biswas and his colleagues, Kai-Ming Ho, an Ames Laboratory senior physicist and an ISU Distinguished Professor of Liberal Arts and Sciences; Gary Tuttle, an ISU associate professor of electrical and computer engineering and a researcher at the university’s Microelectronics Research Center; and Preeti Kohli, a former Iowa State Ph.D. student now at Micron in Manassas, Va. successfully demonstrated that 3-D photonic crystals could serve as add-drop filters, providing greatly enhanced data transmission.

To prove their concept, the researchers used a three-dimensional, microwave-scale photonic crystal constructed from layered alumina rods and containing a full bandgap – a wavelength range in which electromagnetic waves cannot transmit. Just as electronic bandgaps prevent electrons within a certain energy range from passing through a semiconductor, photonic crystals create photonic bandgaps that confine light of certain wavelengths.

The add-drop filter created by the Ames Laboratory team contains an entrance waveguide and an exit waveguide created by removing rod segments from the layered photonic crystal. A one-rod segment separates the two waveguides. (A waveguide is a system or material that can confine and direct electromagnetic waves.) A defect cavity is located one unit cell above the waveguide layer. The waveguides can communicate through the cavity, allowing a specific wavelength frequency to be selected from the input waveguide and transmitted to the output waveguide, excluding other input frequencies and resulting in near 100 percent efficiency for the drop frequencies.

The idea of using photonic crystals for add-drop filters is not new. Since the mid 1990s, many groups worldwide have been working to develop the technology with two-dimensional photonic crystals.

“It works,” Biswas said, “but there is loss of some intensity to the end user because 2-D photonic crystals don’t confine the light completely. For example, in a phone conversation, the voices would dim out. But with 3-D photonic crystal add-drop filters, the communication would be clear.”

Although Biswas, Kohli, Tuttle and Ho have shown that 3-D photonic crystals would make highly efficient add-drop filters, there are still problems to address. Getting the size of the photonic crystals down to work at the wavelengths used for Internet communications – 1.5 microns – is the big challenge. The Ames Lab group now has some of these photonic crystals working in that range, but to make these controlled structures with one input, another output and a defect … that definitely takes some work. A future direction is to simplify the design of the add-drop filter by reducing the layers in the photonic crystal – perhaps having all the action happen in one layer.

The DOE Office of Science, Basic Energy Science Office funded the above research on 3-D photonic crystal add-drop filters.

Ames Laboratory is a U.S. Department of Energy Office of Science laboratory operated for the DOE by Iowa State University. The Lab conducts research into various areas of national concern, including the synthesis and study of new materials, energy resources, high-speed computer design, and environmental cleanup and restoration.

Saren Johnston | EurekAlert!
Further information:
http://www.ameslab.gov

More articles from Information Technology:

nachricht Powerful IT security for the car of the future – research alliance develops new approaches
25.05.2018 | Universität Ulm

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>