Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


First Computer Simulation of Structure of RNA-Molecules

For a long time ribonucleic acids were just regarded as carriers transferring genetic information in the cell nucleus.

The manifold biological importance of small RNA-fragments has only been recognized in the last years: they have important regulatory and catalytic functions within the cell.

What scientists had only been able to examine in experiments so far, has now been simulated on a computer for the first time by Dr. Dietmar Paschek, a chemist of Technische Universität Dortmund, together with his American colleague, Prof. Angel Garcia. Their innovative method describes the complex folding process of RNA-molecules, which happens on the microsecond-scale, to be viewed in detailed single steps with atomic resolution.

A standard personal computer would have to run for 35 years to simulate the complex process. That is why Paschek teamed up with his colleague from Rensselaer Polytechnic Institute in Troy, New York (USA), as this institute currently owns the world’s biggest university-based computer cluster. The simulation was only made possible by using a parallel computer code developed in Dortmund. For the first time the molecular environment, including the solvent water, was described in a very realistic way.

This offers the chance to observe the behavior of an RNA-molecule within its natural environment and provides clues regarding the function and possible reactions of different RNA-molecules in the cell. Small RNA fragments have been shown to be able to specifically disable genes in laboratory tests. A discovery, for which the US-scientists Andrew Z. Fire and Craig C. Mello received the 2006 Nobel Prize for Medicine.

Even if the simulation work of Paschek and Garcia, which could build the basis for research into and further development of this and other ways of using RNA, still is singular pioneering, it could become routine in some years in view of the exponentially increasing computer power. But they can already be sure of their colleagues’ recognition.

In the latest edition of the prestigeous “Journal of the American Chemical Society” the two scientists present their results. Moreover, Dietmar Paschek was invited to report about their innovative simulation methods within the scope of a plenary lecture at this year’s American Chemical Society national meeting in New Orleans.

Ole Luennemann | alfa
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>