Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Computer Simulation of Structure of RNA-Molecules

15.02.2008
For a long time ribonucleic acids were just regarded as carriers transferring genetic information in the cell nucleus.

The manifold biological importance of small RNA-fragments has only been recognized in the last years: they have important regulatory and catalytic functions within the cell.

What scientists had only been able to examine in experiments so far, has now been simulated on a computer for the first time by Dr. Dietmar Paschek, a chemist of Technische Universität Dortmund, together with his American colleague, Prof. Angel Garcia. Their innovative method describes the complex folding process of RNA-molecules, which happens on the microsecond-scale, to be viewed in detailed single steps with atomic resolution.

A standard personal computer would have to run for 35 years to simulate the complex process. That is why Paschek teamed up with his colleague from Rensselaer Polytechnic Institute in Troy, New York (USA), as this institute currently owns the world’s biggest university-based computer cluster. The simulation was only made possible by using a parallel computer code developed in Dortmund. For the first time the molecular environment, including the solvent water, was described in a very realistic way.

This offers the chance to observe the behavior of an RNA-molecule within its natural environment and provides clues regarding the function and possible reactions of different RNA-molecules in the cell. Small RNA fragments have been shown to be able to specifically disable genes in laboratory tests. A discovery, for which the US-scientists Andrew Z. Fire and Craig C. Mello received the 2006 Nobel Prize for Medicine.

Even if the simulation work of Paschek and Garcia, which could build the basis for research into and further development of this and other ways of using RNA, still is singular pioneering, it could become routine in some years in view of the exponentially increasing computer power. But they can already be sure of their colleagues’ recognition.

In the latest edition of the prestigeous “Journal of the American Chemical Society” the two scientists present their results. Moreover, Dietmar Paschek was invited to report about their innovative simulation methods within the scope of a plenary lecture at this year’s American Chemical Society national meeting in New Orleans.

Ole Luennemann | alfa
Further information:
http://www.tu-dortmund.de

More articles from Information Technology:

nachricht 3-D scanning with water
24.07.2017 | Association for Computing Machinery

nachricht Defining the backbone of future mobile internet access
21.07.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>