Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Computer Simulation of Structure of RNA-Molecules

15.02.2008
For a long time ribonucleic acids were just regarded as carriers transferring genetic information in the cell nucleus.

The manifold biological importance of small RNA-fragments has only been recognized in the last years: they have important regulatory and catalytic functions within the cell.

What scientists had only been able to examine in experiments so far, has now been simulated on a computer for the first time by Dr. Dietmar Paschek, a chemist of Technische Universität Dortmund, together with his American colleague, Prof. Angel Garcia. Their innovative method describes the complex folding process of RNA-molecules, which happens on the microsecond-scale, to be viewed in detailed single steps with atomic resolution.

A standard personal computer would have to run for 35 years to simulate the complex process. That is why Paschek teamed up with his colleague from Rensselaer Polytechnic Institute in Troy, New York (USA), as this institute currently owns the world’s biggest university-based computer cluster. The simulation was only made possible by using a parallel computer code developed in Dortmund. For the first time the molecular environment, including the solvent water, was described in a very realistic way.

This offers the chance to observe the behavior of an RNA-molecule within its natural environment and provides clues regarding the function and possible reactions of different RNA-molecules in the cell. Small RNA fragments have been shown to be able to specifically disable genes in laboratory tests. A discovery, for which the US-scientists Andrew Z. Fire and Craig C. Mello received the 2006 Nobel Prize for Medicine.

Even if the simulation work of Paschek and Garcia, which could build the basis for research into and further development of this and other ways of using RNA, still is singular pioneering, it could become routine in some years in view of the exponentially increasing computer power. But they can already be sure of their colleagues’ recognition.

In the latest edition of the prestigeous “Journal of the American Chemical Society” the two scientists present their results. Moreover, Dietmar Paschek was invited to report about their innovative simulation methods within the scope of a plenary lecture at this year’s American Chemical Society national meeting in New Orleans.

Ole Luennemann | alfa
Further information:
http://www.tu-dortmund.de

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Self-illuminating pixels for a new display generation

22.05.2018 | Trade Fair News

Embryonic development: How do limbs develop from cells?

22.05.2018 | Life Sciences

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>