Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gliding to gold – world-beating software could boost British swimming

13.02.2008
New computer software could enable Britain’s swimmers to improve a key aspect of their technique more quickly and effectively than previously possible – and so help them win more medals in major championships in future.

The software provides instant, in-depth feedback on a swimmer’s glide technique. Swimmers glide following starts and turns, when a swimmer is not moving their arms or legs but is just using their momentum to travel through the water. As well as supplying data on head position, body posture/alignment etc, the software actively suggests ways a swimmer can improve their posture to minimise resistance and pinpoints the optimum moment to begin kicking.

The new system offers two key benefits beyond the capabilities of any other currently used in elite swimming training. First, the feedback it generates is available immediately, so swimmers and coaches can use it at the poolside and implement its recommendations while a training session is still in progress; this will speed up the whole process involved in improving glide technique. Second, it generates data of unprecedented quality in terms of detail and accuracy.

Ultimately, the result will be faster times in races. Gliding more efficiently, with less ‘drag’, can cut vital fractions of a second from a swimmer’s time. The difference between winning an Olympic title and finishing out of the medals is often measured in hundredths of a second, so this innovative software could give British swimmers a valuable edge in their quest for glory.

The software is being developed by sports scientists at the University of Edinburgh’s Centre for Aquatics Research and Education (CARE) with additional input from Sheffield Hallam University, and funding from the Engineering and Physical Sciences Research Council (EPSRC) in collaboration with UKSPORT. Once tested and validated, it should be available to swimmers throughout the UK within around 12 months.

First, the swimmer is marked at their body joints using water-resistant markers. The swimmer is then videoed in action using underwater and poolside cameras, with the images fed into a computer equipped with the software. The software tracks the movements of the markers and runs the digitised position data through an innovative, highly sophisticated mathematical model developed at the University of Edinburgh by Dr Roozbeh Naemi. A replay of the swim then instantly appears on a plasma screen at the poolside, overwritten with graphs and data on different technical aspects of the glide.

“Both the speed and accuracy of the feedback will add to the value of the advice that coaches give their swimmers,” says Professor Ross Sanders, who is leading the project. “Another important benefit is that the alterations to technique suggested by the software are customised exactly to suit each individual swimmer.”

Swimmers from the prestigious City of Edinburgh and Warrender swimming clubs will participate in testing the new system and then in experiments to learn more about the factors relating to gliding performance.

“The software could even help to identify the champions of tomorrow,” Professor Sanders adds. “It will show which young swimmers naturally move easily through the water, which may well equate to outstanding ability or a particular aptitude for the sport.”

Natasha Richardson | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Information Technology:

nachricht New 3-D display takes the eye fatigue out of virtual reality
22.06.2017 | The Optical Society

nachricht Modeling the brain with 'Lego bricks'
19.06.2017 | University of Luxembourg

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>