Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Silver keeps the electrons spinning

The future of computing may emerge not from electronics, but from ‘spintronics’. This new technology relies on the transport of electrons whose quantum spin states—or internal angular momentum—are all the same.

Silver can transport spin-polarized electrons, making it ideal for the non-magnetic components in ‘spintronic’ devices

The future of computing may emerge not from electronics, but from ‘spintronics’. This new technology relies on the transport of electrons whose quantum spin states—or internal angular momentum—are all the same. YoshiChika Otani and Takashi Kimura at the University of Tokyo and the RIKEN Frontier Research System in Wako have been searching for the best materials to carry this ‘spin polarization’, and it appears that silver is a strong candidate1.

Many useful spin polarization phenomena arise in hybrid devices comprising both magnetic and non-magnetic materials. However, when spin-polarized electrons pass from a magnet into a non-magnet, they quickly lose their spin polarization in a process called spin-flip scattering. Therefore, one of the most crucial parameters for spintronics is the spin diffusion length of the non-magnet: the length that electrons travel before all their spin polarization is lost.

The RIKEN team built devices called lateral spin valves to test the spin diffusion lengths of different non-magnetic metals: copper, aluminum, and now silver. They found that the spin polarization of electrons remained very high after passing through a silver wire—implying that silver has a long spin diffusion length.

The result contradicts previous work by a group in the US2, who predicted that silver has a very short diffusion length. Otani and Kimura believe this is because the US team did not take account of spin diffusion at the interfaces between the silver wire and the magnetic detectors used in their experiment.

By including the diffusion processes in their calculations, Otani and Kimura have proven that silver actually has a longer spin diffusion length than any other material studied so far. “What we found was quite different, demonstrating that our common understanding about the spin diffusion process was correct,” says Otani.

In related work, the RIKEN team recently developed the first method that provides complete control over the direction of spin polarization in copper, by using two spin injection needles3. Otani and Kimura believe their device could work just as well, if not better, with silver. However it is more difficult to fabricate devices from silver, so they hope to experiment with other materials soon.

“Our future target is to develop ‘spin current circuits’ that manipulate the spin polarization as well as spin angular momentums,” says Otani. “This may be applied to the next generation of memory or logic circuit technology.”

1. Kimura, T. & Otani, Y. Large spin accumulation in a permalloy-silver lateral spin valve. Physical Review Letters 99, 196604 (2007).

2. Godfrey, R. & Johnson, M. Spin injection in mesoscopic silver wires: experimental test of resistance mismatch. Physical Review Letters 96, 136601 (2006).

3. Kimura, T., Otani, Y.-C. & Levy, P.M. Electrical control of the direction of spin accumulation. Physical Review Letters 99, 166601 (2007).

Saeko Okada | ResearchSEA
Further information:

More articles from Information Technology:

nachricht Next Generation Cryptography
20.03.2018 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation
19.03.2018 | Technische Informationsbibliothek (TIB)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>