Silver keeps the electrons spinning

Silver can transport spin-polarized electrons, making it ideal for the non-magnetic components in ‘spintronic’ devices

The future of computing may emerge not from electronics, but from ‘spintronics’. This new technology relies on the transport of electrons whose quantum spin states—or internal angular momentum—are all the same. YoshiChika Otani and Takashi Kimura at the University of Tokyo and the RIKEN Frontier Research System in Wako have been searching for the best materials to carry this ‘spin polarization’, and it appears that silver is a strong candidate1.

Many useful spin polarization phenomena arise in hybrid devices comprising both magnetic and non-magnetic materials. However, when spin-polarized electrons pass from a magnet into a non-magnet, they quickly lose their spin polarization in a process called spin-flip scattering. Therefore, one of the most crucial parameters for spintronics is the spin diffusion length of the non-magnet: the length that electrons travel before all their spin polarization is lost.

The RIKEN team built devices called lateral spin valves to test the spin diffusion lengths of different non-magnetic metals: copper, aluminum, and now silver. They found that the spin polarization of electrons remained very high after passing through a silver wire—implying that silver has a long spin diffusion length.

The result contradicts previous work by a group in the US2, who predicted that silver has a very short diffusion length. Otani and Kimura believe this is because the US team did not take account of spin diffusion at the interfaces between the silver wire and the magnetic detectors used in their experiment.

By including the diffusion processes in their calculations, Otani and Kimura have proven that silver actually has a longer spin diffusion length than any other material studied so far. “What we found was quite different, demonstrating that our common understanding about the spin diffusion process was correct,” says Otani.

In related work, the RIKEN team recently developed the first method that provides complete control over the direction of spin polarization in copper, by using two spin injection needles3. Otani and Kimura believe their device could work just as well, if not better, with silver. However it is more difficult to fabricate devices from silver, so they hope to experiment with other materials soon.

“Our future target is to develop ‘spin current circuits’ that manipulate the spin polarization as well as spin angular momentums,” says Otani. “This may be applied to the next generation of memory or logic circuit technology.”

1. Kimura, T. & Otani, Y. Large spin accumulation in a permalloy-silver lateral spin valve. Physical Review Letters 99, 196604 (2007).

2. Godfrey, R. & Johnson, M. Spin injection in mesoscopic silver wires: experimental test of resistance mismatch. Physical Review Letters 96, 136601 (2006).

3. Kimura, T., Otani, Y.-C. & Levy, P.M. Electrical control of the direction of spin accumulation. Physical Review Letters 99, 166601 (2007).

Media Contact

Saeko Okada ResearchSEA

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors