Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robot rat to lead the way in touch technology

12.02.2008
Researchers from the Bernstein Center for Computational Neuroscience (BCCN) and the Humboldt-Universität zu Berlin are participating in a newly funded EU project "BIOTACT.

The gaol of the project is to develop machines with sophisticated touch technology, like robots that can use their whiskers like a rat to explore their surroundings. The 7.3 million Euro project will bring together nine research groups from seven countries to develop new technologies inspired by the use of touch in the animal kingdom.

These could have a number of possible applications in modern day society from search and rescue robots that could pick their way through rubble and debris to mine-clearing machines to planetary rovers in space.

While vision supplies information about distant objects, touch is invaluable in sensing the nearby environment. The Norwegian rat and the Etruscan shrew, for example, use their whiskers to make sense of their environment. The mammals sweep their whiskers back and forth at high speeds in a controlled manner, allowing them to use touch signals alone to recognize familiar items, determine the shape and surface of objects, and track and capture prey. However, in designing intelligent, life-like machines, the use of touch has been largely overlooked, until now.

The research team at the BCCN is led by Professor Michael Brecht of the Humboldt-Universität zu Berlin. His research group will focus on the Etruscan shrew, the smallest mammal. This animal hunts prey of almost the same size as itself. Thus, guided by vibrissal touch this animal places breath-takingly fast and precise attacks on its insect prey. "The sensory-motor perfomance of this animal is astonishing. Using novel microscopy techniques will offer unique insights about the mammalian brain function," Brecht says.

The Europe-wide research effort is coordinated by Professor Tony Prescott of the University of Sheffield. Using their understanding of the animal kingdom, the team will develop two machines endowed with similar sensing capabilities, including a whiskered robot that can seek-out, identify and track fast-moving target objects. Professor Prescott said: "Overall, our project will bring about a step-change in the understanding of active touch sensing and in the use of whisker-like sensors in intelligent machines. By learning from nature and developing technologies that do use this physical sense, our researchers will be able to enhance the capabilities of the machines of the future."

Notes to editors:
The BIOTACT (BIOmimetic Technology for vibrissal ACtive Touch) project will develop novel biomimetic computational methods and technologies for active touch sensing.
Project Partners include: Tony Prescott, Dept. of Psychology, University of Sheffield, UK (Co-ordinator); Ehud Ahissar, Weizmann Institute, Israel; Wulfram Gerstner, EPFL, Switzerland; Mathew Diamond, International School of Advanced Studies, Trieste, Italy; Tony Pipe/Chris Melhuish, Bristol Robotics Lab, UK; Michael Brecht, Berlin Bernstein Centre for Computational Neuroscience, Germany; David Golomb, Ben Gurion University, Israel; Patrick Pirim, Brain Vision Systems, Paris, France; Mitra Hartmann, Northwestern University, Chicago, USA.
For more information about BIOTACT, please visit www.biotact.org
The project is funded by the EU "Information Systems Technologies" theme, under the "Future Emerging Technologies" (FET) programme. For more information, visit www.cordis.europa.eu/ist/fet/
For further information, please contact:
Prof. Michael Brecht
Bernstein Center for Computational Neuroscience
Humboldt-Universität zu Berlin
Philippstr. 13, House 6
10115 Berlin
Germany
Email: michael.brecht (at) bccn-berlin.de
Phone: +49 30 2093 6770
Fax: +49 30 2093 6771

Katrin Weigmann | idw
Further information:
http://www.biotact.de
http://www.bccn-berlin.de
http://www.activetouch.de

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>