Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Robot rat to lead the way in touch technology

Researchers from the Bernstein Center for Computational Neuroscience (BCCN) and the Humboldt-Universität zu Berlin are participating in a newly funded EU project "BIOTACT.

The gaol of the project is to develop machines with sophisticated touch technology, like robots that can use their whiskers like a rat to explore their surroundings. The 7.3 million Euro project will bring together nine research groups from seven countries to develop new technologies inspired by the use of touch in the animal kingdom.

These could have a number of possible applications in modern day society from search and rescue robots that could pick their way through rubble and debris to mine-clearing machines to planetary rovers in space.

While vision supplies information about distant objects, touch is invaluable in sensing the nearby environment. The Norwegian rat and the Etruscan shrew, for example, use their whiskers to make sense of their environment. The mammals sweep their whiskers back and forth at high speeds in a controlled manner, allowing them to use touch signals alone to recognize familiar items, determine the shape and surface of objects, and track and capture prey. However, in designing intelligent, life-like machines, the use of touch has been largely overlooked, until now.

The research team at the BCCN is led by Professor Michael Brecht of the Humboldt-Universität zu Berlin. His research group will focus on the Etruscan shrew, the smallest mammal. This animal hunts prey of almost the same size as itself. Thus, guided by vibrissal touch this animal places breath-takingly fast and precise attacks on its insect prey. "The sensory-motor perfomance of this animal is astonishing. Using novel microscopy techniques will offer unique insights about the mammalian brain function," Brecht says.

The Europe-wide research effort is coordinated by Professor Tony Prescott of the University of Sheffield. Using their understanding of the animal kingdom, the team will develop two machines endowed with similar sensing capabilities, including a whiskered robot that can seek-out, identify and track fast-moving target objects. Professor Prescott said: "Overall, our project will bring about a step-change in the understanding of active touch sensing and in the use of whisker-like sensors in intelligent machines. By learning from nature and developing technologies that do use this physical sense, our researchers will be able to enhance the capabilities of the machines of the future."

Notes to editors:
The BIOTACT (BIOmimetic Technology for vibrissal ACtive Touch) project will develop novel biomimetic computational methods and technologies for active touch sensing.
Project Partners include: Tony Prescott, Dept. of Psychology, University of Sheffield, UK (Co-ordinator); Ehud Ahissar, Weizmann Institute, Israel; Wulfram Gerstner, EPFL, Switzerland; Mathew Diamond, International School of Advanced Studies, Trieste, Italy; Tony Pipe/Chris Melhuish, Bristol Robotics Lab, UK; Michael Brecht, Berlin Bernstein Centre for Computational Neuroscience, Germany; David Golomb, Ben Gurion University, Israel; Patrick Pirim, Brain Vision Systems, Paris, France; Mitra Hartmann, Northwestern University, Chicago, USA.
For more information about BIOTACT, please visit
The project is funded by the EU "Information Systems Technologies" theme, under the "Future Emerging Technologies" (FET) programme. For more information, visit
For further information, please contact:
Prof. Michael Brecht
Bernstein Center for Computational Neuroscience
Humboldt-Universität zu Berlin
Philippstr. 13, House 6
10115 Berlin
Email: michael.brecht (at)
Phone: +49 30 2093 6770
Fax: +49 30 2093 6771

Katrin Weigmann | idw
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>