Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robot rat to lead the way in touch technology

12.02.2008
Researchers from the Bernstein Center for Computational Neuroscience (BCCN) and the Humboldt-Universität zu Berlin are participating in a newly funded EU project "BIOTACT.

The gaol of the project is to develop machines with sophisticated touch technology, like robots that can use their whiskers like a rat to explore their surroundings. The 7.3 million Euro project will bring together nine research groups from seven countries to develop new technologies inspired by the use of touch in the animal kingdom.

These could have a number of possible applications in modern day society from search and rescue robots that could pick their way through rubble and debris to mine-clearing machines to planetary rovers in space.

While vision supplies information about distant objects, touch is invaluable in sensing the nearby environment. The Norwegian rat and the Etruscan shrew, for example, use their whiskers to make sense of their environment. The mammals sweep their whiskers back and forth at high speeds in a controlled manner, allowing them to use touch signals alone to recognize familiar items, determine the shape and surface of objects, and track and capture prey. However, in designing intelligent, life-like machines, the use of touch has been largely overlooked, until now.

The research team at the BCCN is led by Professor Michael Brecht of the Humboldt-Universität zu Berlin. His research group will focus on the Etruscan shrew, the smallest mammal. This animal hunts prey of almost the same size as itself. Thus, guided by vibrissal touch this animal places breath-takingly fast and precise attacks on its insect prey. "The sensory-motor perfomance of this animal is astonishing. Using novel microscopy techniques will offer unique insights about the mammalian brain function," Brecht says.

The Europe-wide research effort is coordinated by Professor Tony Prescott of the University of Sheffield. Using their understanding of the animal kingdom, the team will develop two machines endowed with similar sensing capabilities, including a whiskered robot that can seek-out, identify and track fast-moving target objects. Professor Prescott said: "Overall, our project will bring about a step-change in the understanding of active touch sensing and in the use of whisker-like sensors in intelligent machines. By learning from nature and developing technologies that do use this physical sense, our researchers will be able to enhance the capabilities of the machines of the future."

Notes to editors:
The BIOTACT (BIOmimetic Technology for vibrissal ACtive Touch) project will develop novel biomimetic computational methods and technologies for active touch sensing.
Project Partners include: Tony Prescott, Dept. of Psychology, University of Sheffield, UK (Co-ordinator); Ehud Ahissar, Weizmann Institute, Israel; Wulfram Gerstner, EPFL, Switzerland; Mathew Diamond, International School of Advanced Studies, Trieste, Italy; Tony Pipe/Chris Melhuish, Bristol Robotics Lab, UK; Michael Brecht, Berlin Bernstein Centre for Computational Neuroscience, Germany; David Golomb, Ben Gurion University, Israel; Patrick Pirim, Brain Vision Systems, Paris, France; Mitra Hartmann, Northwestern University, Chicago, USA.
For more information about BIOTACT, please visit www.biotact.org
The project is funded by the EU "Information Systems Technologies" theme, under the "Future Emerging Technologies" (FET) programme. For more information, visit www.cordis.europa.eu/ist/fet/
For further information, please contact:
Prof. Michael Brecht
Bernstein Center for Computational Neuroscience
Humboldt-Universität zu Berlin
Philippstr. 13, House 6
10115 Berlin
Germany
Email: michael.brecht (at) bccn-berlin.de
Phone: +49 30 2093 6770
Fax: +49 30 2093 6771

Katrin Weigmann | idw
Further information:
http://www.biotact.de
http://www.bccn-berlin.de
http://www.activetouch.de

More articles from Information Technology:

nachricht Defining the backbone of future mobile internet access
21.07.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

nachricht Researchers create new technique for manipulating polarization of terahertz radiation
20.07.2017 | Brown University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>