Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taxi! Novel location-based services hailed

08.02.2008
European researchers are developing a range of novel technologies and end-to-end solutions for indoor and outdoor geo-location scenarios encountered by the likes of utility companies, emergency services and even taxi firms. This innovation offers a huge boost to the European market for location-based services.

It's late on Saturday night. Hundreds of revellers empty out of the bars and restaurants in town and call for cabs to get home. But can the taxi firm meet such a sudden demand?

Amazingly, taxis turn up at the stand within minutes, as if they have all been waiting just around the corner. In actual fact, they have been using one of the most recent applications of geographic positioning technology, known as location based services (LBS).

Once a request for a cab comes through to the control room, the LBS platform notifies vehicles that ‘best fit’ the booking request, based on criteria such as proximity to the pick-up point, customer preferences, or dispatcher policies. Such geographic targeting helps cabs use less fuel and reach their customers faster.

The Taxi-on-Demand system is just one LBS solution developed by the EU-funded LIAISON project. “LIAISON began in 2003 at a time when the market for location-based services was in its infancy,” says Remi Challamel, a project manager at ThalesAleniaSpace and coordinator of LIAISON. “The aim was to give the professional market for LBS solutions a boost through the development of suitable, reliable and affordable technologies.”

Along with the Taxi-on-Demand application, LIAISON has worked on LBS technologies for utility companies, waste management operators, the fire brigade and police – all benefiting from being able to pinpoint their personnel on a map.

Triangulation chokes
The concept behind LBS is simple: the geographic location of a mobile device is reported over wireless telecom networks. These include GPRS, UMTS, WLAN, industry specific networks, such as the secure TETRA system used by the emergency services, and even experimental ultra-wideband systems in collaboration with other EU-funded projects. However, the manner in which a device is located can vary dramatically, depending on user needs.

“[We] have come to realise that there is no single solution to the problem of LBS,” Challamel tells ICT Results. “In the early days of LBS, operators hoped to calculate the location of a device using triangulation – measuring the distance between a number of base stations and a mobile device to determine a precise location.”

But this never worked very well, and is costly to deploy, he adds. “Now we are trialling a number of different methods and algorithms that integrate with different networks. We also tap into Europe's Galileo global navigation satellite system and EGNOS system which improves the performance of the US GPS and Russian GLONASS systems over Europe.”

In particular, LIAISON has pioneered indoor LBS, trialling a first-generation system using wifi technology that can position a device to within 10m. Challamel says that such accuracy is good for presence management applications – to see whether someone is in a room or not, for example – but higher accuracy is also desirable.

“To get higher precision we need to make some adaptations to the handsets. It will take a few years before these can be agreed by manufacturers, but we expect these higher accuracy, second-generation services to be used by the emergency services and hospitals, among others.”

Killer application
Now in its final stages, the project is also testing a system that combines its WiFi positioning platform with tiny microelectromechanical systems (mems) attached to people to monitor the movement of personnel within a building. The MEMS detect body movement and orientation, providing positioning data in indoor environments. During indoor rescue operations, for example, they could alert control rooms if personnel became trapped or fell inside a building.

“The killer application that really drove growth of the LBS market was the development of assisted-GPS technology that uses satellite-based geo-location,” says Challamel. “In LIAISON, we have developed an enhanced, assisted GPS system that enables accurate positioning without significant power demands, making it possible to locate small mobile devices like those carried by mobile professional workers.”

From its conception, the project has been geared towards developing commercial LBS solutions. “For big companies like Thales, we only do R&D if we believe that technologies are close to market.” While European funding, he suggests, is good support in taking it to market, to build and commercialise a system.

The Thales Locations Space Server, using the enhanced assisted GPS technology, is currently deployed by Europe’s largest telecoms operator to meet business LBS applications. Geoconcept, a French SME partner, is already deploying its system with French emergency services. A consortium of Greek partners is currently establishing a spin-off company to market the specific Taxi-on-Demand system, due to go on sale later in 2008.

“LIAISON has ushered in the first generation of LBS,” says Challamel, “and laid the foundation for second-generation applications which will be more accurate, with better indoor penetration, and suitable for navigation purposes, as well as advertising and location-based social networking.”

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>