Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Taxi! Novel location-based services hailed

European researchers are developing a range of novel technologies and end-to-end solutions for indoor and outdoor geo-location scenarios encountered by the likes of utility companies, emergency services and even taxi firms. This innovation offers a huge boost to the European market for location-based services.

It's late on Saturday night. Hundreds of revellers empty out of the bars and restaurants in town and call for cabs to get home. But can the taxi firm meet such a sudden demand?

Amazingly, taxis turn up at the stand within minutes, as if they have all been waiting just around the corner. In actual fact, they have been using one of the most recent applications of geographic positioning technology, known as location based services (LBS).

Once a request for a cab comes through to the control room, the LBS platform notifies vehicles that ‘best fit’ the booking request, based on criteria such as proximity to the pick-up point, customer preferences, or dispatcher policies. Such geographic targeting helps cabs use less fuel and reach their customers faster.

The Taxi-on-Demand system is just one LBS solution developed by the EU-funded LIAISON project. “LIAISON began in 2003 at a time when the market for location-based services was in its infancy,” says Remi Challamel, a project manager at ThalesAleniaSpace and coordinator of LIAISON. “The aim was to give the professional market for LBS solutions a boost through the development of suitable, reliable and affordable technologies.”

Along with the Taxi-on-Demand application, LIAISON has worked on LBS technologies for utility companies, waste management operators, the fire brigade and police – all benefiting from being able to pinpoint their personnel on a map.

Triangulation chokes
The concept behind LBS is simple: the geographic location of a mobile device is reported over wireless telecom networks. These include GPRS, UMTS, WLAN, industry specific networks, such as the secure TETRA system used by the emergency services, and even experimental ultra-wideband systems in collaboration with other EU-funded projects. However, the manner in which a device is located can vary dramatically, depending on user needs.

“[We] have come to realise that there is no single solution to the problem of LBS,” Challamel tells ICT Results. “In the early days of LBS, operators hoped to calculate the location of a device using triangulation – measuring the distance between a number of base stations and a mobile device to determine a precise location.”

But this never worked very well, and is costly to deploy, he adds. “Now we are trialling a number of different methods and algorithms that integrate with different networks. We also tap into Europe's Galileo global navigation satellite system and EGNOS system which improves the performance of the US GPS and Russian GLONASS systems over Europe.”

In particular, LIAISON has pioneered indoor LBS, trialling a first-generation system using wifi technology that can position a device to within 10m. Challamel says that such accuracy is good for presence management applications – to see whether someone is in a room or not, for example – but higher accuracy is also desirable.

“To get higher precision we need to make some adaptations to the handsets. It will take a few years before these can be agreed by manufacturers, but we expect these higher accuracy, second-generation services to be used by the emergency services and hospitals, among others.”

Killer application
Now in its final stages, the project is also testing a system that combines its WiFi positioning platform with tiny microelectromechanical systems (mems) attached to people to monitor the movement of personnel within a building. The MEMS detect body movement and orientation, providing positioning data in indoor environments. During indoor rescue operations, for example, they could alert control rooms if personnel became trapped or fell inside a building.

“The killer application that really drove growth of the LBS market was the development of assisted-GPS technology that uses satellite-based geo-location,” says Challamel. “In LIAISON, we have developed an enhanced, assisted GPS system that enables accurate positioning without significant power demands, making it possible to locate small mobile devices like those carried by mobile professional workers.”

From its conception, the project has been geared towards developing commercial LBS solutions. “For big companies like Thales, we only do R&D if we believe that technologies are close to market.” While European funding, he suggests, is good support in taking it to market, to build and commercialise a system.

The Thales Locations Space Server, using the enhanced assisted GPS technology, is currently deployed by Europe’s largest telecoms operator to meet business LBS applications. Geoconcept, a French SME partner, is already deploying its system with French emergency services. A consortium of Greek partners is currently establishing a spin-off company to market the specific Taxi-on-Demand system, due to go on sale later in 2008.

“LIAISON has ushered in the first generation of LBS,” says Challamel, “and laid the foundation for second-generation applications which will be more accurate, with better indoor penetration, and suitable for navigation purposes, as well as advertising and location-based social networking.”

Christian Nielsen | alfa
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>