Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ambient intelligence: snowboarding to the new frontier

08.02.2008
Think how many lives could be saved if emergency services were alerted the moment a pedestrian is run over. Think how much more fun snowboarding could be if you could emote your feelings electronically to ski-buddies. Breakthroughs in capturing and transmitting ambient intelligence could make these scenarios a reality.

The My Space/Facebook phenomenon has shown how we love to share personal information. But will we take the next step and share our feelings and emotions across the ether?

Whether it is sensors on our skin, in our clothing or embedded in the environment, research into ambient intelligence is advancing in leaps and bounds. We could soon be using technology in a whole new, human-centric way.

But before we can fully interact in a responsive electronic environment, a number of obstacles need to be overcome. For example, the development of miniaturised, unobtrusive hardware, clever interfaces, data-secure systems, autonomous and flexible network protocols, and more efficient wireless infrastructures.

There are already diverse applications using ambient technology on the market, but one crucial sticking point is that few of them are fully integrated into wireless communication systems. European researchers have been addressing this outstanding issue.

“The idea is to integrate sensor networks into wireless communication systems and to ‘capture’ the user’s environment, perhaps using a mobile phone as a gateway, and then transmit this context to a service platform to deliver a personalised service and act on situations,” says Laurent Herault, project coordinator of a research scheme developing new ways of capturing ambient intelligence in post-3G mobile communication systems through wireless sensor networks.

Remote emoting
The context captured can be an environmental one, such as location, but also the subject’s emotional context – what is known as the “physiological state”.

“We capture physiological parameters, such as temperature, heart rate and skin conductance levels [measuring sweat gland activity],” says Herault who heads the e-Sense project. “We analyse the evolution of these signals and the function of emotional input. For instance, we show [people] films and we analyse their reaction via sensors. We can determine if a person is afraid, happy, sad…”

The potential for applications is vast: it goes from entertainment, to e-health and safety, and industrial applications, such as remote asset monitoring. The consortium behind this, which includes a number of European universities, research institutes and companies, such as Telefonica, IBM, Fujitsu, Thales, Nokia Siemens Networks, EADS and Mitsubishi, has developed 26 scenarios and 16 audiovisual showcases demonstrating the use of sensor networks to capture ambient intelligence and use it in mobile communications.

Perhaps the most obvious scenarios focus on emergency situations, with systems contributing to improving the response of emergency services to car crashes and other accidents. Other applications also include leisure and sport.

“We can measure the feelings you experience while skiing, such as acceleration, speed and happiness. This can be useful if you want to share your experiences with friends,” says Herault.

The EU-funded e-Sense also carried out studies on the acceptance of such technologies and their societal impact. Most of these were positive, with the best results coming from Nordic countries on healthcare, sport and entertainment applications.

Breakthrough science
The project has also achieved a number of technical breakthroughs with wider impact on the development of ambient intelligence. E-Sense focused on developing radio components, which are known to be the power consumption bottleneck in wireless sensor networks. So it has developed very small sensor nodes that consume up to ten times less power than the current state-of-the-art systems.

“We have developed an ultra-low-powered implementation of the ZigBee system and achieved our aim of 20 nanojoules per transmitted bit, which is significantly better than the energy efficiency of any chip on the market today,” says Herault.

E-Sense has also defined an architecture which is adaptable to every module and every scenario, increasing the versatility and efficiency of communications. “We have developed an end-to-end system architecture which we call ‘e-Stack’, a very generic protocol stack with different subsystems: a connectivity subsystem, a middleware subsystem, an application subsystem and a management subsystem,” says Herault.

“All subsystems are compatible and e-Stack is effectively a bit like Lego. It is a toolbox of protocol elements which can easily be connected to other elements, in order to have the most efficient protocol stack for your specific application, in terms of energy consumption and bit rate. The defined architecture also extends to beyond-3G systems and platforms, specifying an innovative interface and middleware solution.”

New horizons
The e-Sense project, backed by the EU’s FP6 funding programme, concluded at the end of 2007. But a new project under FP7, called Sensei, will take research a step further by integrating the powerful network islands made up of different protocol elements into the web.

“We believe that, in the future, most requests on the internet will be to obtain information originating from sensors,” says Herault.

The consortium of 20 new partners behind Sensei, which includes Nokia, Ericsson and SAP, also intends to create a new Industrial Standardisation Group, under the guidance of the European telecommunications Standards Institute, with the aim of creating a European standard for wireless sensor networks.

All this could mean that in the not-so-distant future, you could use the internet to keep in touch with friends and family 24/7, detecting where they are, what they are doing and, crucially, how they feel. So, no need to rack your brains to come up with original Facebook status updates anymore.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/id/89427

More articles from Information Technology:

nachricht World first: 'Storing lightning inside thunder'
18.09.2017 | University of Sydney

nachricht New software turns mobile-phone accessory into breathing monitor
14.09.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>