Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designing Graded Structure with Custom-Fit

08.02.2008
A multi million European project has found the answer to designing products with multi material and graded structure.

Custom-Fit is an industry led project funded by the EU under Sixth Framework Prog ramme, with the aim of creating a fully integrated system for the design, production and supply of individualise products using Rapid Manufacturing technologies. One of the objectives of Custom-Fit is to manufacture products with graded materials in a single manufacturing process. To facilitate this, it has developed a new design philosophy and verification of product designs with graded structures.

Commercial computer aided design (CAD) systems in general are used for designing the geometry of an object and are not capable of describing the material composition of the object. The project has gathered experts from around Europe to develop three design systems for representing products with graded structure. TNO from Netherlands, Fraunhofer-IFAM from Germany and Materialise from Belgium are three of the partners in the Custom-Fit project. Each of them has defined a method for describing the structural design of a product based on different philosophy. The three software are InnerSpace by TNO, Multi Phase Topology Optimisation from IFAM and a FEA representation method by Materialise. These software offer the ability to define the proportion and distribution of materials within an object.

Lieve Boeykens from Materialise, who is leading the software development in the project, said that these software are very unique. She says, “These are very strong product, they maybe lighter in terms of data size but they are able to define the graded structure and deposit the material properly. It is not just our partners in the project who will benefit from these developments; eventually other market players will be able to use the same software, too. ”

Each of the three software has different strength and is suitable for the modeling of different product.

· InnerSpace, by TNO, enables a designer to define material property distributions and also the distribution profile. The software uses the STL file as the source file and the STL model defines the outer boundary of the object. It can define the material distribution for a whole object or just part of the object at any location. The data files from InnerSpace is very small and thus easy to transfer.

· Multi Phase Topology Optimisation (MPTO), by IFAM, is a numerical simulation technique based on finite element method. It is able to determine the optimum distribution of two or more different materials in components under thermal and mechanical loads. It finds an optimal spatial distribution of several different materials in order to achieve highest stiffness.

· Materialise also uses the FEA method to define a geometric model that consists of a large number of small scale volumetric elements. Each element can carry as many properties as the designer wants to define. It also enables the designer to define the material deposition within the object.

The field of graded material design is an emerging market and there are many new opportunities. Custom-Fit is using the software for the design of a range of products, including implants, prosthesis, helmet and seats. The availability of software for designing graded structure opens up the possibility of designing products with better mechanical structure. The next step would be to be able to manufacture such products. The project is now working on interfacing these software to additive manufacturing machines and thus realising the printing of products with graded structure.

Sunny-Luisa Martínez-Marín | alfa
Further information:
http://www.custom-fit.org
http://www.aiju.info

More articles from Information Technology:

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

nachricht New silicon structure opens the gate to quantum computers
12.12.2017 | Princeton University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>